F S Torres, B Rates, M T R Gomes, C E Salas, A M C Pimenta, F Oliveira, M M Santoro, M E de Lima
{"title":"Bmoo fimp - 1:一种新的毛蛇蛇毒纤维蛋白原溶解金属蛋白酶。","authors":"F S Torres, B Rates, M T R Gomes, C E Salas, A M C Pimenta, F Oliveira, M M Santoro, M E de Lima","doi":"10.5402/2012/673941","DOIUrl":null,"url":null,"abstract":"<p><p>A new fibrinogenolytic metalloproteinase (Bmoo FIBMP-I) was purified from Bothrops moojeni snake venom. This enzyme was isolated through a combination of three chromatographic steps (ion-exchange, molecular exclusion, and affinity chromatography). Analyses by reverse phase chromatography, followed by mass spectrometry, showed the presence of enzyme isoforms with average molecular mass of 22.8 kDa. The SDS-PAGE analyses showed a single chain of 27.6 kDa, in the presence and absence of reducing agent. The protein has a blocked N-terminal. One of the peptides obtained by enzymatic digestion of a reduced and S-alkylated isoform was completely sequenced by mass spectrometry (MS/MS). Bmoo FIBMP-I showed similarity with hemorrhagic factor and several metalloproteinases (MP). This enzyme degraded Aα-chain faster than the Bβ-chain and did not affect the γ-chain of bovine fibrinogen. The absence of proteolytic activity after treatment with EDTA, together with the observed molecular mass, led us to suggest that Bmoo FIBMP-I is a member of the P-I class of the snake venom MP family. Bmoo FIBMP-I showed pH-dependent proteolytic activity on azocasein, but was devoid of coagulant, defibrinating, or hemorrhagic activities. The kinetic parameters of proteolytic activity in azocasein were determined (V max = 0.4596 Uh(-1)nmol(-1) ± 0.1031 and K m = 14.59 mg/mL ± 4.610).</p>","PeriodicalId":14674,"journal":{"name":"ISRN Toxicology","volume":"2012 ","pages":"673941"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5402/2012/673941","citationCount":"9","resultStr":"{\"title\":\"Bmoo FIBMP-I: A New Fibrinogenolytic Metalloproteinase from Bothrops moojeni Snake Venom.\",\"authors\":\"F S Torres, B Rates, M T R Gomes, C E Salas, A M C Pimenta, F Oliveira, M M Santoro, M E de Lima\",\"doi\":\"10.5402/2012/673941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new fibrinogenolytic metalloproteinase (Bmoo FIBMP-I) was purified from Bothrops moojeni snake venom. This enzyme was isolated through a combination of three chromatographic steps (ion-exchange, molecular exclusion, and affinity chromatography). Analyses by reverse phase chromatography, followed by mass spectrometry, showed the presence of enzyme isoforms with average molecular mass of 22.8 kDa. The SDS-PAGE analyses showed a single chain of 27.6 kDa, in the presence and absence of reducing agent. The protein has a blocked N-terminal. One of the peptides obtained by enzymatic digestion of a reduced and S-alkylated isoform was completely sequenced by mass spectrometry (MS/MS). Bmoo FIBMP-I showed similarity with hemorrhagic factor and several metalloproteinases (MP). This enzyme degraded Aα-chain faster than the Bβ-chain and did not affect the γ-chain of bovine fibrinogen. The absence of proteolytic activity after treatment with EDTA, together with the observed molecular mass, led us to suggest that Bmoo FIBMP-I is a member of the P-I class of the snake venom MP family. Bmoo FIBMP-I showed pH-dependent proteolytic activity on azocasein, but was devoid of coagulant, defibrinating, or hemorrhagic activities. The kinetic parameters of proteolytic activity in azocasein were determined (V max = 0.4596 Uh(-1)nmol(-1) ± 0.1031 and K m = 14.59 mg/mL ± 4.610).</p>\",\"PeriodicalId\":14674,\"journal\":{\"name\":\"ISRN Toxicology\",\"volume\":\"2012 \",\"pages\":\"673941\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5402/2012/673941\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5402/2012/673941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5402/2012/673941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
Bmoo FIBMP-I: A New Fibrinogenolytic Metalloproteinase from Bothrops moojeni Snake Venom.
A new fibrinogenolytic metalloproteinase (Bmoo FIBMP-I) was purified from Bothrops moojeni snake venom. This enzyme was isolated through a combination of three chromatographic steps (ion-exchange, molecular exclusion, and affinity chromatography). Analyses by reverse phase chromatography, followed by mass spectrometry, showed the presence of enzyme isoforms with average molecular mass of 22.8 kDa. The SDS-PAGE analyses showed a single chain of 27.6 kDa, in the presence and absence of reducing agent. The protein has a blocked N-terminal. One of the peptides obtained by enzymatic digestion of a reduced and S-alkylated isoform was completely sequenced by mass spectrometry (MS/MS). Bmoo FIBMP-I showed similarity with hemorrhagic factor and several metalloproteinases (MP). This enzyme degraded Aα-chain faster than the Bβ-chain and did not affect the γ-chain of bovine fibrinogen. The absence of proteolytic activity after treatment with EDTA, together with the observed molecular mass, led us to suggest that Bmoo FIBMP-I is a member of the P-I class of the snake venom MP family. Bmoo FIBMP-I showed pH-dependent proteolytic activity on azocasein, but was devoid of coagulant, defibrinating, or hemorrhagic activities. The kinetic parameters of proteolytic activity in azocasein were determined (V max = 0.4596 Uh(-1)nmol(-1) ± 0.1031 and K m = 14.59 mg/mL ± 4.610).