{"title":"大肠杆菌O157:H7对HEp-2细胞和牛大肠黏膜外植体粘附性的影响","authors":"A I Etcheverría, G H Arroyo, R Alzola, A E Parma","doi":"10.5402/2011/697020","DOIUrl":null,"url":null,"abstract":"<p><p>Enterohemorrhagic E. coli strains (EHEC) had emerged as foodborne pathogens and cause in human diarrhea and hemolytic-uremic syndrome. Because of the widespread distribution of EHEC serotypes and O157 and non-O157 in cattle population, its control will require interventions at the farm level such as the administration of probiotics that produce inhibitory metabolites. E. coli O157:H7 shows tissue tropisms for the gastrointestinal tract (GIT) of cattle. The aim of this study was to test the ability of a colicinogenic E. coli (isolated from bovine) to reduce the adherence of E. coli O157:H7 to HEp-2 cells and to GIT of cattle. We inoculated HEp-2 cells and bovine colon explants with both kinds of strains. Colicinogenic E. coli was able to reduce the adherence of E. coli O157:H7 to HEp-2 cells and to bovine tissues.</p>","PeriodicalId":14849,"journal":{"name":"ISRN Microbiology","volume":"2011 ","pages":"697020"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658800/pdf/","citationCount":"4","resultStr":"{\"title\":\"Reduction of Adherence of E. coli O157:H7 to HEp-2 Cells and to Bovine Large Intestinal Mucosal Explants by Colicinogenic E. coli.\",\"authors\":\"A I Etcheverría, G H Arroyo, R Alzola, A E Parma\",\"doi\":\"10.5402/2011/697020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enterohemorrhagic E. coli strains (EHEC) had emerged as foodborne pathogens and cause in human diarrhea and hemolytic-uremic syndrome. Because of the widespread distribution of EHEC serotypes and O157 and non-O157 in cattle population, its control will require interventions at the farm level such as the administration of probiotics that produce inhibitory metabolites. E. coli O157:H7 shows tissue tropisms for the gastrointestinal tract (GIT) of cattle. The aim of this study was to test the ability of a colicinogenic E. coli (isolated from bovine) to reduce the adherence of E. coli O157:H7 to HEp-2 cells and to GIT of cattle. We inoculated HEp-2 cells and bovine colon explants with both kinds of strains. Colicinogenic E. coli was able to reduce the adherence of E. coli O157:H7 to HEp-2 cells and to bovine tissues.</p>\",\"PeriodicalId\":14849,\"journal\":{\"name\":\"ISRN Microbiology\",\"volume\":\"2011 \",\"pages\":\"697020\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658800/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5402/2011/697020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5402/2011/697020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/1/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
Reduction of Adherence of E. coli O157:H7 to HEp-2 Cells and to Bovine Large Intestinal Mucosal Explants by Colicinogenic E. coli.
Enterohemorrhagic E. coli strains (EHEC) had emerged as foodborne pathogens and cause in human diarrhea and hemolytic-uremic syndrome. Because of the widespread distribution of EHEC serotypes and O157 and non-O157 in cattle population, its control will require interventions at the farm level such as the administration of probiotics that produce inhibitory metabolites. E. coli O157:H7 shows tissue tropisms for the gastrointestinal tract (GIT) of cattle. The aim of this study was to test the ability of a colicinogenic E. coli (isolated from bovine) to reduce the adherence of E. coli O157:H7 to HEp-2 cells and to GIT of cattle. We inoculated HEp-2 cells and bovine colon explants with both kinds of strains. Colicinogenic E. coli was able to reduce the adherence of E. coli O157:H7 to HEp-2 cells and to bovine tissues.