随机引力波背景:方法和意义

IF 14.5 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
Nick van Remortel , Kamiel Janssens , Kevin Turbang
{"title":"随机引力波背景:方法和意义","authors":"Nick van Remortel ,&nbsp;Kamiel Janssens ,&nbsp;Kevin Turbang","doi":"10.1016/j.ppnp.2022.104003","DOIUrl":null,"url":null,"abstract":"<div><p>Beyond individually resolvable gravitational wave<span> events such as binary black hole and binary neutron star mergers, the superposition of many more weak signals coming from a multitude of sources is expected to contribute to an overall background, the so-called stochastic gravitational wave background. In this review, we give an overview of possible detection methods in the search for this background and provide a detailed review of the data-analysis techniques, focusing primarily on current Earth-based interferometric gravitational-wave detectors. In addition, various validation techniques aimed at reinforcing the claim of a detection of such a background are discussed as well. We conclude this review by listing some of the astrophysical and cosmological implications resulting from current upper limits on the stochastic background of gravitational waves.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"128 ","pages":"Article 104003"},"PeriodicalIF":14.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Stochastic gravitational wave background: Methods and implications\",\"authors\":\"Nick van Remortel ,&nbsp;Kamiel Janssens ,&nbsp;Kevin Turbang\",\"doi\":\"10.1016/j.ppnp.2022.104003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Beyond individually resolvable gravitational wave<span> events such as binary black hole and binary neutron star mergers, the superposition of many more weak signals coming from a multitude of sources is expected to contribute to an overall background, the so-called stochastic gravitational wave background. In this review, we give an overview of possible detection methods in the search for this background and provide a detailed review of the data-analysis techniques, focusing primarily on current Earth-based interferometric gravitational-wave detectors. In addition, various validation techniques aimed at reinforcing the claim of a detection of such a background are discussed as well. We conclude this review by listing some of the astrophysical and cosmological implications resulting from current upper limits on the stochastic background of gravitational waves.</span></p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":\"128 \",\"pages\":\"Article 104003\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146641022000618\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641022000618","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 11

摘要

除了可单独解决的引力波事件,如双黑洞和双中子星合并,来自众多来源的更多微弱信号的叠加预计将有助于形成一个整体背景,即所谓的随机引力波背景。在这篇综述中,我们概述了可能的探测方法,以寻找这种背景,并提供了数据分析技术的详细回顾,主要集中在目前的地球干涉引力波探测器。此外,还讨论了旨在加强对这种背景的检测的主张的各种验证技术。最后,我们列出了引力波随机背景上限所产生的一些天体物理学和宇宙学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic gravitational wave background: Methods and implications

Beyond individually resolvable gravitational wave events such as binary black hole and binary neutron star mergers, the superposition of many more weak signals coming from a multitude of sources is expected to contribute to an overall background, the so-called stochastic gravitational wave background. In this review, we give an overview of possible detection methods in the search for this background and provide a detailed review of the data-analysis techniques, focusing primarily on current Earth-based interferometric gravitational-wave detectors. In addition, various validation techniques aimed at reinforcing the claim of a detection of such a background are discussed as well. We conclude this review by listing some of the astrophysical and cosmological implications resulting from current upper limits on the stochastic background of gravitational waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Particle and Nuclear Physics
Progress in Particle and Nuclear Physics 物理-物理:核物理
CiteScore
24.50
自引率
3.10%
发文量
41
审稿时长
72 days
期刊介绍: Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信