{"title":"为什么slip在静态条件下抑制铜绿假单胞菌的初始粘附?","authors":"Yuanyuan Shen , Yihan Sun , Peng Wang , Dun Zhang","doi":"10.1016/j.jiec.2023.05.008","DOIUrl":null,"url":null,"abstract":"<div><p>Slippery liquid-infused porous surfaces (SLIPSs) have distinguished themselves in inhibiting bacteria attachment and biofilm development in static conditions. However, underlying antifouling mechanisms, especially from gene level in bioinformatics, is still lacking. In this work, we investigated the initial attachment difference of <em>Pseudomonas aeruginosa</em><span> PAO1 on polydimethylsiloxane<span> (PDMS) surface and the infused silicone slippery surface (i-PDMS). RNA sequencing (RNA-seq) was used to investigate the differences in the expression of PAO1 gene on elastomer surface during initial adhesion before and after oil injection. Compared with PDMS, bacterial attachment on i-PDMS was remarkably decreased 98.0 ± 0.7 % within 10 mins. And the antifouling ability of i-PDMS significantly outperformed PDMS throughout the entire culture period of PAO1 (14 days) in static conditions. RNA-seq reveals that the down-regulated PA1382 of PAO1 in bulk near the i-PDMS surfaces may inhibit bacterial initial adhesion. PA1382 gene encodes type II secretion outer membranes (OM) secretin, also known as type II secretion system (T2SS) protein GspD, which is involved in regulating the opening or closing of exoprotein channels, influencing bacterial adhesion and biofilm formation by controlling the secretion of toxins or effectors. Our findings provide a deeper understanding of the mechanism by which SLIPS inhibits initial bacterial adhesion.</span></span></p></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"124 ","pages":"Pages 532-538"},"PeriodicalIF":5.9000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why does SLIPS inhibit P.aeruginosa initial adhesion in static condition?\",\"authors\":\"Yuanyuan Shen , Yihan Sun , Peng Wang , Dun Zhang\",\"doi\":\"10.1016/j.jiec.2023.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Slippery liquid-infused porous surfaces (SLIPSs) have distinguished themselves in inhibiting bacteria attachment and biofilm development in static conditions. However, underlying antifouling mechanisms, especially from gene level in bioinformatics, is still lacking. In this work, we investigated the initial attachment difference of <em>Pseudomonas aeruginosa</em><span> PAO1 on polydimethylsiloxane<span> (PDMS) surface and the infused silicone slippery surface (i-PDMS). RNA sequencing (RNA-seq) was used to investigate the differences in the expression of PAO1 gene on elastomer surface during initial adhesion before and after oil injection. Compared with PDMS, bacterial attachment on i-PDMS was remarkably decreased 98.0 ± 0.7 % within 10 mins. And the antifouling ability of i-PDMS significantly outperformed PDMS throughout the entire culture period of PAO1 (14 days) in static conditions. RNA-seq reveals that the down-regulated PA1382 of PAO1 in bulk near the i-PDMS surfaces may inhibit bacterial initial adhesion. PA1382 gene encodes type II secretion outer membranes (OM) secretin, also known as type II secretion system (T2SS) protein GspD, which is involved in regulating the opening or closing of exoprotein channels, influencing bacterial adhesion and biofilm formation by controlling the secretion of toxins or effectors. Our findings provide a deeper understanding of the mechanism by which SLIPS inhibits initial bacterial adhesion.</span></span></p></div>\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"124 \",\"pages\":\"Pages 532-538\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226086X23002794\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X23002794","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Why does SLIPS inhibit P.aeruginosa initial adhesion in static condition?
Slippery liquid-infused porous surfaces (SLIPSs) have distinguished themselves in inhibiting bacteria attachment and biofilm development in static conditions. However, underlying antifouling mechanisms, especially from gene level in bioinformatics, is still lacking. In this work, we investigated the initial attachment difference of Pseudomonas aeruginosa PAO1 on polydimethylsiloxane (PDMS) surface and the infused silicone slippery surface (i-PDMS). RNA sequencing (RNA-seq) was used to investigate the differences in the expression of PAO1 gene on elastomer surface during initial adhesion before and after oil injection. Compared with PDMS, bacterial attachment on i-PDMS was remarkably decreased 98.0 ± 0.7 % within 10 mins. And the antifouling ability of i-PDMS significantly outperformed PDMS throughout the entire culture period of PAO1 (14 days) in static conditions. RNA-seq reveals that the down-regulated PA1382 of PAO1 in bulk near the i-PDMS surfaces may inhibit bacterial initial adhesion. PA1382 gene encodes type II secretion outer membranes (OM) secretin, also known as type II secretion system (T2SS) protein GspD, which is involved in regulating the opening or closing of exoprotein channels, influencing bacterial adhesion and biofilm formation by controlling the secretion of toxins or effectors. Our findings provide a deeper understanding of the mechanism by which SLIPS inhibits initial bacterial adhesion.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.