Kristian Rönn , Andre Swarts , Vickey Kalaskar , Terry Alger , Rupali Tripathi , Juha Keskiväli , Ossi Kaario , Annukka Santasalo-Aarnio , Rolf Reitz , Martti Larmi
{"title":"增压式火花点火发动机的低速预点火和超爆震研究进展","authors":"Kristian Rönn , Andre Swarts , Vickey Kalaskar , Terry Alger , Rupali Tripathi , Juha Keskiväli , Ossi Kaario , Annukka Santasalo-Aarnio , Rolf Reitz , Martti Larmi","doi":"10.1016/j.pecs.2022.101064","DOIUrl":null,"url":null,"abstract":"<div><p>The introduction of downsized, turbocharged Gasoline Direct Injection (GDI) engines in the automotive market has led to a rapid increase in research on Low-speed Pre-ignition (LSPI) and super-knock as abnormal combustion phenomena within the last decade. The former is characterized as an early ignition of the fuel–air mixture, primarily initiated by an oil–fuel droplet or detached deposit. Meanwhile, super-knock is an occasional development from pre-ignition to high intensity knocking through detonation, which is either initiated by a shock wave interacting with a propagating reaction and cylinder surfaces or inside a hotspot with a suitable heat release and reactivity gradient. The phenomenon can be divided into four stages, including LSPI precursor initiation, establishment and propagation of a pre-ignited flame, autoignition of end-gases and development to a detonation. LSPI and super-knock are rare phenomena, difficult to observe optically in engines, and differences in methodologies and setups between steady-state experiments can lead to discrepancies in results. Experimental research has included more detailed approaches using glow plug-equipped engines, constant volume combustion chambers and rapid compression machines. In addition, the improved availability of mechanisms for fuel and lubricant surrogates has allowed researchers to model the oil–fuel interaction at the cylinder walls, evaporation and autoignition of oil–fuel droplets and regimes for different propagation modes of an autoignition reaction wave. This paper presents a comprehensive review of the underlying phenomena behind LSPI and its development to super-knock. Furthermore, it presents the methodology in experimental research and draws conclusions for mitigating strategies based on studies involving fuel, oil and engine parameters. Finally, it discusses the prerequisites for LSPI from oil–fuel droplets and the future needs of research as original equipment manufacturers (OEM) and lubricant industry have already adopted some proven solutions to their products.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"95 ","pages":"Article 101064"},"PeriodicalIF":32.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Low-speed pre-ignition and super-knock in boosted spark-ignition engines: A review\",\"authors\":\"Kristian Rönn , Andre Swarts , Vickey Kalaskar , Terry Alger , Rupali Tripathi , Juha Keskiväli , Ossi Kaario , Annukka Santasalo-Aarnio , Rolf Reitz , Martti Larmi\",\"doi\":\"10.1016/j.pecs.2022.101064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The introduction of downsized, turbocharged Gasoline Direct Injection (GDI) engines in the automotive market has led to a rapid increase in research on Low-speed Pre-ignition (LSPI) and super-knock as abnormal combustion phenomena within the last decade. The former is characterized as an early ignition of the fuel–air mixture, primarily initiated by an oil–fuel droplet or detached deposit. Meanwhile, super-knock is an occasional development from pre-ignition to high intensity knocking through detonation, which is either initiated by a shock wave interacting with a propagating reaction and cylinder surfaces or inside a hotspot with a suitable heat release and reactivity gradient. The phenomenon can be divided into four stages, including LSPI precursor initiation, establishment and propagation of a pre-ignited flame, autoignition of end-gases and development to a detonation. LSPI and super-knock are rare phenomena, difficult to observe optically in engines, and differences in methodologies and setups between steady-state experiments can lead to discrepancies in results. Experimental research has included more detailed approaches using glow plug-equipped engines, constant volume combustion chambers and rapid compression machines. In addition, the improved availability of mechanisms for fuel and lubricant surrogates has allowed researchers to model the oil–fuel interaction at the cylinder walls, evaporation and autoignition of oil–fuel droplets and regimes for different propagation modes of an autoignition reaction wave. This paper presents a comprehensive review of the underlying phenomena behind LSPI and its development to super-knock. Furthermore, it presents the methodology in experimental research and draws conclusions for mitigating strategies based on studies involving fuel, oil and engine parameters. Finally, it discusses the prerequisites for LSPI from oil–fuel droplets and the future needs of research as original equipment manufacturers (OEM) and lubricant industry have already adopted some proven solutions to their products.</p></div>\",\"PeriodicalId\":410,\"journal\":{\"name\":\"Progress in Energy and Combustion Science\",\"volume\":\"95 \",\"pages\":\"Article 101064\"},\"PeriodicalIF\":32.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Energy and Combustion Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360128522000715\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128522000715","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Low-speed pre-ignition and super-knock in boosted spark-ignition engines: A review
The introduction of downsized, turbocharged Gasoline Direct Injection (GDI) engines in the automotive market has led to a rapid increase in research on Low-speed Pre-ignition (LSPI) and super-knock as abnormal combustion phenomena within the last decade. The former is characterized as an early ignition of the fuel–air mixture, primarily initiated by an oil–fuel droplet or detached deposit. Meanwhile, super-knock is an occasional development from pre-ignition to high intensity knocking through detonation, which is either initiated by a shock wave interacting with a propagating reaction and cylinder surfaces or inside a hotspot with a suitable heat release and reactivity gradient. The phenomenon can be divided into four stages, including LSPI precursor initiation, establishment and propagation of a pre-ignited flame, autoignition of end-gases and development to a detonation. LSPI and super-knock are rare phenomena, difficult to observe optically in engines, and differences in methodologies and setups between steady-state experiments can lead to discrepancies in results. Experimental research has included more detailed approaches using glow plug-equipped engines, constant volume combustion chambers and rapid compression machines. In addition, the improved availability of mechanisms for fuel and lubricant surrogates has allowed researchers to model the oil–fuel interaction at the cylinder walls, evaporation and autoignition of oil–fuel droplets and regimes for different propagation modes of an autoignition reaction wave. This paper presents a comprehensive review of the underlying phenomena behind LSPI and its development to super-knock. Furthermore, it presents the methodology in experimental research and draws conclusions for mitigating strategies based on studies involving fuel, oil and engine parameters. Finally, it discusses the prerequisites for LSPI from oil–fuel droplets and the future needs of research as original equipment manufacturers (OEM) and lubricant industry have already adopted some proven solutions to their products.
期刊介绍:
Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science.
PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.