Italo R R Martins, Rosimeire F Dos Santos, Ana C de C Correia, Gislaine A de Oliveira, Cibério L Macêdo, Fabio de S Monteiro, Paula F Dos Santos, Fabiana de A Cavalcante, Josean F Tavares, Bagnólia A da Silva
{"title":"木参中三环二萜t-7α-羟基三环二萜-18-酸的松弛作用和图。气管平滑肌。","authors":"Italo R R Martins, Rosimeire F Dos Santos, Ana C de C Correia, Gislaine A de Oliveira, Cibério L Macêdo, Fabio de S Monteiro, Paula F Dos Santos, Fabiana de A Cavalcante, Josean F Tavares, Bagnólia A da Silva","doi":"10.1540/jsmr.49.15","DOIUrl":null,"url":null,"abstract":"<p><p>Ent-7α-hydroxytrachyloban-18-oic acid, a trachylobane diterpene from Xylopia langsdorfiana, has previously been shown to relax the guinea-pig trachea in a concentration-dependent manner. In this study we aimed to elucidate the mechanisms underlying this action and so contribute to the discovery of natural products with therapeutic potential. A possible interaction between diterpene and the Ca(2+)-calmodulin complex was eliminated as chlorpromazine (10(-6) M), a calmodulin inhibitor, did not significantly alter the diterpene-induced relaxation (pD2 = 4.38 ± 0.07 and 4.25 ± 0.07; mean ± S.E.M., n=5). Trachylobane-318 showed a higher relaxant potency when the trachea was contracted by 18 mM KCl than it did with 60 mM KCl (pD2 = 4.90 ± 0.25 and 3.88 ± 0.01, n=5), suggesting the possible activation of K(+) channels. This was confirmed, as in the presence of 10 mM TEA(+) (a non-selective K(+) channel blocker), diterpene relaxation potency was significantly reduced (pD2 = 4.38 ± 0.07 to 4.01 ± 0.06, n=5). Furthermore, K(+) channel subtypes KATP, KV, SKCa and BKCa seem to be modulated positively by trachylobane-318 (pD2 = 3.91 ± 0.003, 4.00 ± 0.06, 3.45 ± 0.14 and 3.80 ± 0.05, n=5) but not the Kir subtype channel (pD2 = 4.15 ± 0.10, n=5). Cyclic nucleotides were not involved as the relaxation due to aminophylline (pD2 = 4.27 ± 0.09, n=5) was not altered in the presence of 3 × 10(-5) M trachylobane-318 (pD2 = 4.46 ± 0.08, n=5). Thus, at a functional level, trachylobane-318 seems to relax the guinea-pig trachea by positive modulation of K(+) channels, particularly the KATP, KV, SKCa and BKCa subtypes. </p>","PeriodicalId":39619,"journal":{"name":"Journal of Smooth Muscle Research","volume":"49 ","pages":"15-25"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1540/jsmr.49.15","citationCount":"0","resultStr":"{\"title\":\"Relaxant effect of Ent-7α-hydroxytrachyloban-18-oic acid, a trachylobane diterpene from Xylopia langsdorfiana A. St-Hil. & Tul., on tracheal smooth muscle.\",\"authors\":\"Italo R R Martins, Rosimeire F Dos Santos, Ana C de C Correia, Gislaine A de Oliveira, Cibério L Macêdo, Fabio de S Monteiro, Paula F Dos Santos, Fabiana de A Cavalcante, Josean F Tavares, Bagnólia A da Silva\",\"doi\":\"10.1540/jsmr.49.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ent-7α-hydroxytrachyloban-18-oic acid, a trachylobane diterpene from Xylopia langsdorfiana, has previously been shown to relax the guinea-pig trachea in a concentration-dependent manner. In this study we aimed to elucidate the mechanisms underlying this action and so contribute to the discovery of natural products with therapeutic potential. A possible interaction between diterpene and the Ca(2+)-calmodulin complex was eliminated as chlorpromazine (10(-6) M), a calmodulin inhibitor, did not significantly alter the diterpene-induced relaxation (pD2 = 4.38 ± 0.07 and 4.25 ± 0.07; mean ± S.E.M., n=5). Trachylobane-318 showed a higher relaxant potency when the trachea was contracted by 18 mM KCl than it did with 60 mM KCl (pD2 = 4.90 ± 0.25 and 3.88 ± 0.01, n=5), suggesting the possible activation of K(+) channels. This was confirmed, as in the presence of 10 mM TEA(+) (a non-selective K(+) channel blocker), diterpene relaxation potency was significantly reduced (pD2 = 4.38 ± 0.07 to 4.01 ± 0.06, n=5). Furthermore, K(+) channel subtypes KATP, KV, SKCa and BKCa seem to be modulated positively by trachylobane-318 (pD2 = 3.91 ± 0.003, 4.00 ± 0.06, 3.45 ± 0.14 and 3.80 ± 0.05, n=5) but not the Kir subtype channel (pD2 = 4.15 ± 0.10, n=5). Cyclic nucleotides were not involved as the relaxation due to aminophylline (pD2 = 4.27 ± 0.09, n=5) was not altered in the presence of 3 × 10(-5) M trachylobane-318 (pD2 = 4.46 ± 0.08, n=5). Thus, at a functional level, trachylobane-318 seems to relax the guinea-pig trachea by positive modulation of K(+) channels, particularly the KATP, KV, SKCa and BKCa subtypes. </p>\",\"PeriodicalId\":39619,\"journal\":{\"name\":\"Journal of Smooth Muscle Research\",\"volume\":\"49 \",\"pages\":\"15-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1540/jsmr.49.15\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Smooth Muscle Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1540/jsmr.49.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Smooth Muscle Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1540/jsmr.49.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
异-7α-hydroxytrachyloba -18-oic acid是一种来自木本植物的trachyloba二萜,先前已被证明以浓度依赖的方式放松豚鼠的气管。在这项研究中,我们旨在阐明这一作用的机制,从而有助于发现具有治疗潜力的天然产物。由于钙调素抑制剂氯丙嗪(10(-6)M)没有显著改变二萜诱导的松弛(pD2 = 4.38±0.07和4.25±0.07),二萜与Ca(2+)-钙调素复合物之间可能的相互作用被消除;平均值±s.e.m., n=5)。气管经18 mM KCl收缩时,trachyloane -318表现出比60 mM KCl收缩时更高的松弛效力(pD2 = 4.90±0.25和3.88±0.01,n=5),提示可能激活了K(+)通道。结果证实,在10 mM TEA(+)(一种非选择性K(+)通道阻滞剂)存在下,二萜弛豫效力显著降低(pD2 = 4.38±0.07至4.01±0.06,n=5)。此外,K(+)通道亚型KATP、KV、SKCa和BKCa似乎被三环烷-318正向调节(pD2 = 3.91±0.003、4.00±0.06、3.45±0.14和3.80±0.05,n=5),但Kir亚型通道不被正向调节(pD2 = 4.15±0.10,n=5)。3 × 10(-5) M三环烷-318 (pD2 = 4.46±0.08,n=5)的存在并未改变由氨茶碱引起的弛豫(pD2 = 4.27±0.09,n=5),因此不涉及环核苷酸。因此,在功能水平上,三环烷-318似乎通过正向调节K(+)通道,特别是KATP、KV、SKCa和BKCa亚型来放松豚鼠气管。
Relaxant effect of Ent-7α-hydroxytrachyloban-18-oic acid, a trachylobane diterpene from Xylopia langsdorfiana A. St-Hil. & Tul., on tracheal smooth muscle.
Ent-7α-hydroxytrachyloban-18-oic acid, a trachylobane diterpene from Xylopia langsdorfiana, has previously been shown to relax the guinea-pig trachea in a concentration-dependent manner. In this study we aimed to elucidate the mechanisms underlying this action and so contribute to the discovery of natural products with therapeutic potential. A possible interaction between diterpene and the Ca(2+)-calmodulin complex was eliminated as chlorpromazine (10(-6) M), a calmodulin inhibitor, did not significantly alter the diterpene-induced relaxation (pD2 = 4.38 ± 0.07 and 4.25 ± 0.07; mean ± S.E.M., n=5). Trachylobane-318 showed a higher relaxant potency when the trachea was contracted by 18 mM KCl than it did with 60 mM KCl (pD2 = 4.90 ± 0.25 and 3.88 ± 0.01, n=5), suggesting the possible activation of K(+) channels. This was confirmed, as in the presence of 10 mM TEA(+) (a non-selective K(+) channel blocker), diterpene relaxation potency was significantly reduced (pD2 = 4.38 ± 0.07 to 4.01 ± 0.06, n=5). Furthermore, K(+) channel subtypes KATP, KV, SKCa and BKCa seem to be modulated positively by trachylobane-318 (pD2 = 3.91 ± 0.003, 4.00 ± 0.06, 3.45 ± 0.14 and 3.80 ± 0.05, n=5) but not the Kir subtype channel (pD2 = 4.15 ± 0.10, n=5). Cyclic nucleotides were not involved as the relaxation due to aminophylline (pD2 = 4.27 ± 0.09, n=5) was not altered in the presence of 3 × 10(-5) M trachylobane-318 (pD2 = 4.46 ± 0.08, n=5). Thus, at a functional level, trachylobane-318 seems to relax the guinea-pig trachea by positive modulation of K(+) channels, particularly the KATP, KV, SKCa and BKCa subtypes.