John J Widholm, Justin T Gass, Richard M Cleva, M Foster Olive
{"title":"mGluR5阳性变构调节剂CDPPB不会改变大鼠甲基苯丙胺寻求行为的消失或情境恢复。","authors":"John J Widholm, Justin T Gass, Richard M Cleva, M Foster Olive","doi":"10.4172/2155-6105.S1-004","DOIUrl":null,"url":null,"abstract":"<p><p>Extinction of drug-seeking behavior is a form of new and active learning. Facilitation of extinction learning is of clinical interest since cue exposure therapies for the treatment of addiction have largely been unsuccessful in preventing relapse, primarily due to the context specificity of extinction learning. Recently, several studies have shown that potentiation of glutamatergic transmission can facilitate extinction learning in rodent models of cocaine addiction. In this study we investigated the effects of the type 5 metabotropic glutamate receptor (mGluR5) positive allosteric modulator (PAM) 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) on the extinction and contextual reinstatement of methamphetamine-seeking behavior. Rats were trained and allowed to self-administer methamphetamine (0.1 mg/kg/infusion) in 2 hr daily sessions in Context A where self-administration chambers had distinct tactile, visual, auditory, and olfactory cues. Next, CDPPB (60 mg/kg) or vehicle was administered prior to subsequent extinction training sessions that were conducted in modified self-administration chambers (Context B) that were Context A. Following 16 days of extinction training in Context B, animals were placed back in Context A for assessment of contextual reinstatement of methamphetamine-seeking behavior. CDPPB failed to produce significant reductions in extinction responding or in the magnitude of contextual reinstatement of methamphetamine-seeking compared to vehicle treated controls. We postulate that numerous factors, including methamphetamine-induced changes in mGluR5 receptor expression or function, may have contributed to the observed lack of effects. Although these findings initially suggest that mGluR5 PAMs may be ineffective in facilitating extinction learning or preventing context-induced relapse in methamphetamine addiction, additional studies are warranted examining effects of other mGluR5 PAMs, particularly those with improved pharmacological properties and devoid of potential side effects at higher doses.</p>","PeriodicalId":73583,"journal":{"name":"Journal of addiction research & therapy","volume":"S1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305267/pdf/nihms359644.pdf","citationCount":"20","resultStr":"{\"title\":\"The mGluR5 Positive Allosteric Modulator CDPPB Does Not Alter Extinction or Contextual Reinstatement of Methamphetamine-Seeking Behavior in Rats.\",\"authors\":\"John J Widholm, Justin T Gass, Richard M Cleva, M Foster Olive\",\"doi\":\"10.4172/2155-6105.S1-004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extinction of drug-seeking behavior is a form of new and active learning. Facilitation of extinction learning is of clinical interest since cue exposure therapies for the treatment of addiction have largely been unsuccessful in preventing relapse, primarily due to the context specificity of extinction learning. Recently, several studies have shown that potentiation of glutamatergic transmission can facilitate extinction learning in rodent models of cocaine addiction. In this study we investigated the effects of the type 5 metabotropic glutamate receptor (mGluR5) positive allosteric modulator (PAM) 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) on the extinction and contextual reinstatement of methamphetamine-seeking behavior. Rats were trained and allowed to self-administer methamphetamine (0.1 mg/kg/infusion) in 2 hr daily sessions in Context A where self-administration chambers had distinct tactile, visual, auditory, and olfactory cues. Next, CDPPB (60 mg/kg) or vehicle was administered prior to subsequent extinction training sessions that were conducted in modified self-administration chambers (Context B) that were Context A. Following 16 days of extinction training in Context B, animals were placed back in Context A for assessment of contextual reinstatement of methamphetamine-seeking behavior. CDPPB failed to produce significant reductions in extinction responding or in the magnitude of contextual reinstatement of methamphetamine-seeking compared to vehicle treated controls. We postulate that numerous factors, including methamphetamine-induced changes in mGluR5 receptor expression or function, may have contributed to the observed lack of effects. Although these findings initially suggest that mGluR5 PAMs may be ineffective in facilitating extinction learning or preventing context-induced relapse in methamphetamine addiction, additional studies are warranted examining effects of other mGluR5 PAMs, particularly those with improved pharmacological properties and devoid of potential side effects at higher doses.</p>\",\"PeriodicalId\":73583,\"journal\":{\"name\":\"Journal of addiction research & therapy\",\"volume\":\"S1 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305267/pdf/nihms359644.pdf\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of addiction research & therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-6105.S1-004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of addiction research & therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6105.S1-004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mGluR5 Positive Allosteric Modulator CDPPB Does Not Alter Extinction or Contextual Reinstatement of Methamphetamine-Seeking Behavior in Rats.
Extinction of drug-seeking behavior is a form of new and active learning. Facilitation of extinction learning is of clinical interest since cue exposure therapies for the treatment of addiction have largely been unsuccessful in preventing relapse, primarily due to the context specificity of extinction learning. Recently, several studies have shown that potentiation of glutamatergic transmission can facilitate extinction learning in rodent models of cocaine addiction. In this study we investigated the effects of the type 5 metabotropic glutamate receptor (mGluR5) positive allosteric modulator (PAM) 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) on the extinction and contextual reinstatement of methamphetamine-seeking behavior. Rats were trained and allowed to self-administer methamphetamine (0.1 mg/kg/infusion) in 2 hr daily sessions in Context A where self-administration chambers had distinct tactile, visual, auditory, and olfactory cues. Next, CDPPB (60 mg/kg) or vehicle was administered prior to subsequent extinction training sessions that were conducted in modified self-administration chambers (Context B) that were Context A. Following 16 days of extinction training in Context B, animals were placed back in Context A for assessment of contextual reinstatement of methamphetamine-seeking behavior. CDPPB failed to produce significant reductions in extinction responding or in the magnitude of contextual reinstatement of methamphetamine-seeking compared to vehicle treated controls. We postulate that numerous factors, including methamphetamine-induced changes in mGluR5 receptor expression or function, may have contributed to the observed lack of effects. Although these findings initially suggest that mGluR5 PAMs may be ineffective in facilitating extinction learning or preventing context-induced relapse in methamphetamine addiction, additional studies are warranted examining effects of other mGluR5 PAMs, particularly those with improved pharmacological properties and devoid of potential side effects at higher doses.