基于分类器组合的睡眠呼吸暂停实时检测。

Baile Xie, Hlaing Minn
{"title":"基于分类器组合的睡眠呼吸暂停实时检测。","authors":"Baile Xie,&nbsp;Hlaing Minn","doi":"10.1109/TITB.2012.2188299","DOIUrl":null,"url":null,"abstract":"<p><p>To find an efficient and valid alternative of polysomnography (PSG), this paper investigates real-time sleep apnea and hypopnea syndrome (SAHS) detection based on electrocardiograph (ECG) and saturation of peripheral oxygen (SpO(2)) signals, individually and in combination. We include ten machine-learning algorithms in our classification experiment. It is shown that our proposed SpO (2) features outperform the ECG features in terms of diagnostic ability. More importantly, we propose classifier combination to further enhance the classification performance by harnessing the complementary information provided by individual classifiers. With our selected SpO(2) and ECG features, the classifier combination using AdaBoost with Decision Stump, Bagging with REPTree, and either kNN or Decision Table achieves sensitivity, specificity, and accuracy all around 82% for a minute-based real-time SAHS detection over 25 sleep-disordered-breathing suspects' full overnight recordings.</p>","PeriodicalId":55008,"journal":{"name":"IEEE Transactions on Information Technology in Biomedicine","volume":"16 3","pages":"469-77"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TITB.2012.2188299","citationCount":"234","resultStr":"{\"title\":\"Real-time sleep apnea detection by classifier combination.\",\"authors\":\"Baile Xie,&nbsp;Hlaing Minn\",\"doi\":\"10.1109/TITB.2012.2188299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To find an efficient and valid alternative of polysomnography (PSG), this paper investigates real-time sleep apnea and hypopnea syndrome (SAHS) detection based on electrocardiograph (ECG) and saturation of peripheral oxygen (SpO(2)) signals, individually and in combination. We include ten machine-learning algorithms in our classification experiment. It is shown that our proposed SpO (2) features outperform the ECG features in terms of diagnostic ability. More importantly, we propose classifier combination to further enhance the classification performance by harnessing the complementary information provided by individual classifiers. With our selected SpO(2) and ECG features, the classifier combination using AdaBoost with Decision Stump, Bagging with REPTree, and either kNN or Decision Table achieves sensitivity, specificity, and accuracy all around 82% for a minute-based real-time SAHS detection over 25 sleep-disordered-breathing suspects' full overnight recordings.</p>\",\"PeriodicalId\":55008,\"journal\":{\"name\":\"IEEE Transactions on Information Technology in Biomedicine\",\"volume\":\"16 3\",\"pages\":\"469-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TITB.2012.2188299\",\"citationCount\":\"234\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Technology in Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TITB.2012.2188299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Technology in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TITB.2012.2188299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/2/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 234

摘要

为了寻找一种高效有效的多导睡眠图(PSG)替代方法,本文研究了基于心电图(ECG)和外周血氧饱和度(SpO(2))信号的实时睡眠呼吸暂停和低通气综合征(SAHS)检测,包括单独检测和联合检测。我们在分类实验中使用了十种机器学习算法。结果表明,我们提出的SpO(2)特征在诊断能力方面优于ECG特征。更重要的是,我们提出了分类器组合,通过利用单个分类器提供的互补信息进一步提高分类性能。根据我们选择的SpO(2)和ECG特征,分类器组合使用AdaBoost与Decision Stump, Bagging与REPTree,以及kNN或Decision Table,对25名睡眠呼吸障碍嫌疑人的完整夜间记录进行基于分钟的实时SAHS检测,灵敏度,特异性和准确性均在82%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time sleep apnea detection by classifier combination.

To find an efficient and valid alternative of polysomnography (PSG), this paper investigates real-time sleep apnea and hypopnea syndrome (SAHS) detection based on electrocardiograph (ECG) and saturation of peripheral oxygen (SpO(2)) signals, individually and in combination. We include ten machine-learning algorithms in our classification experiment. It is shown that our proposed SpO (2) features outperform the ECG features in terms of diagnostic ability. More importantly, we propose classifier combination to further enhance the classification performance by harnessing the complementary information provided by individual classifiers. With our selected SpO(2) and ECG features, the classifier combination using AdaBoost with Decision Stump, Bagging with REPTree, and either kNN or Decision Table achieves sensitivity, specificity, and accuracy all around 82% for a minute-based real-time SAHS detection over 25 sleep-disordered-breathing suspects' full overnight recordings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Technology in Biomedicine
IEEE Transactions on Information Technology in Biomedicine 工程技术-计算机:跨学科应用
自引率
0.00%
发文量
1
审稿时长
4.8 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信