{"title":"基于分类器组合的睡眠呼吸暂停实时检测。","authors":"Baile Xie, Hlaing Minn","doi":"10.1109/TITB.2012.2188299","DOIUrl":null,"url":null,"abstract":"<p><p>To find an efficient and valid alternative of polysomnography (PSG), this paper investigates real-time sleep apnea and hypopnea syndrome (SAHS) detection based on electrocardiograph (ECG) and saturation of peripheral oxygen (SpO(2)) signals, individually and in combination. We include ten machine-learning algorithms in our classification experiment. It is shown that our proposed SpO (2) features outperform the ECG features in terms of diagnostic ability. More importantly, we propose classifier combination to further enhance the classification performance by harnessing the complementary information provided by individual classifiers. With our selected SpO(2) and ECG features, the classifier combination using AdaBoost with Decision Stump, Bagging with REPTree, and either kNN or Decision Table achieves sensitivity, specificity, and accuracy all around 82% for a minute-based real-time SAHS detection over 25 sleep-disordered-breathing suspects' full overnight recordings.</p>","PeriodicalId":55008,"journal":{"name":"IEEE Transactions on Information Technology in Biomedicine","volume":"16 3","pages":"469-77"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TITB.2012.2188299","citationCount":"234","resultStr":"{\"title\":\"Real-time sleep apnea detection by classifier combination.\",\"authors\":\"Baile Xie, Hlaing Minn\",\"doi\":\"10.1109/TITB.2012.2188299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To find an efficient and valid alternative of polysomnography (PSG), this paper investigates real-time sleep apnea and hypopnea syndrome (SAHS) detection based on electrocardiograph (ECG) and saturation of peripheral oxygen (SpO(2)) signals, individually and in combination. We include ten machine-learning algorithms in our classification experiment. It is shown that our proposed SpO (2) features outperform the ECG features in terms of diagnostic ability. More importantly, we propose classifier combination to further enhance the classification performance by harnessing the complementary information provided by individual classifiers. With our selected SpO(2) and ECG features, the classifier combination using AdaBoost with Decision Stump, Bagging with REPTree, and either kNN or Decision Table achieves sensitivity, specificity, and accuracy all around 82% for a minute-based real-time SAHS detection over 25 sleep-disordered-breathing suspects' full overnight recordings.</p>\",\"PeriodicalId\":55008,\"journal\":{\"name\":\"IEEE Transactions on Information Technology in Biomedicine\",\"volume\":\"16 3\",\"pages\":\"469-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TITB.2012.2188299\",\"citationCount\":\"234\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Technology in Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TITB.2012.2188299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Technology in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TITB.2012.2188299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/2/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time sleep apnea detection by classifier combination.
To find an efficient and valid alternative of polysomnography (PSG), this paper investigates real-time sleep apnea and hypopnea syndrome (SAHS) detection based on electrocardiograph (ECG) and saturation of peripheral oxygen (SpO(2)) signals, individually and in combination. We include ten machine-learning algorithms in our classification experiment. It is shown that our proposed SpO (2) features outperform the ECG features in terms of diagnostic ability. More importantly, we propose classifier combination to further enhance the classification performance by harnessing the complementary information provided by individual classifiers. With our selected SpO(2) and ECG features, the classifier combination using AdaBoost with Decision Stump, Bagging with REPTree, and either kNN or Decision Table achieves sensitivity, specificity, and accuracy all around 82% for a minute-based real-time SAHS detection over 25 sleep-disordered-breathing suspects' full overnight recordings.