Sylvie Rodrigues-Ferreira, Marina Morel, Rosana I Reis, Françoise Cormier, Véronique Baud, Claudio M Costa-Neto, Clara Nahmias
{"title":"研究乳腺癌细胞中血管紧张素II AT2受体功能的新细胞模型。","authors":"Sylvie Rodrigues-Ferreira, Marina Morel, Rosana I Reis, Françoise Cormier, Véronique Baud, Claudio M Costa-Neto, Clara Nahmias","doi":"10.1155/2012/745027","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have highlighted the AT1 receptor as a potential therapeutic target in breast cancer, while the role of the AT2 subtype in this disease has remained largely neglected. The present study describes the generation and characterization of a new cellular model of human invasive breast cancer cells (D3H2LN-AT2) stably expressing high levels of Flag-tagged human AT2 receptor (Flag-hAT2). These cells exhibit high-affinity binding sites for AngII, and total binding can be displaced by the AT2-selective antagonist PD123319 but not by the AT1-selective antagonist losartan. Of interest, high levels of expression of luciferase and green fluorescent protein make these cells suitable for bioluminescence and fluorescence studies in vitro and in vivo. We provide here a novel tool to investigate the AT2 receptor functions in breast cancer cells, independently of AT1 receptor activation.</p>","PeriodicalId":14239,"journal":{"name":"International Journal of Peptides","volume":"2012 ","pages":"745027"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/745027","citationCount":"9","resultStr":"{\"title\":\"A Novel Cellular Model to Study Angiotensin II AT2 Receptor Function in Breast Cancer Cells.\",\"authors\":\"Sylvie Rodrigues-Ferreira, Marina Morel, Rosana I Reis, Françoise Cormier, Véronique Baud, Claudio M Costa-Neto, Clara Nahmias\",\"doi\":\"10.1155/2012/745027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have highlighted the AT1 receptor as a potential therapeutic target in breast cancer, while the role of the AT2 subtype in this disease has remained largely neglected. The present study describes the generation and characterization of a new cellular model of human invasive breast cancer cells (D3H2LN-AT2) stably expressing high levels of Flag-tagged human AT2 receptor (Flag-hAT2). These cells exhibit high-affinity binding sites for AngII, and total binding can be displaced by the AT2-selective antagonist PD123319 but not by the AT1-selective antagonist losartan. Of interest, high levels of expression of luciferase and green fluorescent protein make these cells suitable for bioluminescence and fluorescence studies in vitro and in vivo. We provide here a novel tool to investigate the AT2 receptor functions in breast cancer cells, independently of AT1 receptor activation.</p>\",\"PeriodicalId\":14239,\"journal\":{\"name\":\"International Journal of Peptides\",\"volume\":\"2012 \",\"pages\":\"745027\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/745027\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Peptides\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/745027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Peptides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/745027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/12/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Cellular Model to Study Angiotensin II AT2 Receptor Function in Breast Cancer Cells.
Recent studies have highlighted the AT1 receptor as a potential therapeutic target in breast cancer, while the role of the AT2 subtype in this disease has remained largely neglected. The present study describes the generation and characterization of a new cellular model of human invasive breast cancer cells (D3H2LN-AT2) stably expressing high levels of Flag-tagged human AT2 receptor (Flag-hAT2). These cells exhibit high-affinity binding sites for AngII, and total binding can be displaced by the AT2-selective antagonist PD123319 but not by the AT1-selective antagonist losartan. Of interest, high levels of expression of luciferase and green fluorescent protein make these cells suitable for bioluminescence and fluorescence studies in vitro and in vivo. We provide here a novel tool to investigate the AT2 receptor functions in breast cancer cells, independently of AT1 receptor activation.