Qammer Hussain Abbasi, Andrea Sani, Akram Alomainy, Yang Hao
{"title":"用于医疗保健应用的特定主题超宽带身体中心无线电信道和系统的数值表征和建模。","authors":"Qammer Hussain Abbasi, Andrea Sani, Akram Alomainy, Yang Hao","doi":"10.1109/TITB.2011.2177526","DOIUrl":null,"url":null,"abstract":"<p><p>The paper presents a subject-specific radio propagation study and system modeling in wireless body area networks using a simulation tool based on the parallel finite-difference time-domain technique. This technique is well suited to model the radio propagation around complex, inhomogeneous objects such as the human body. The impact of different digital phantoms in on-body radio channel and system performance was studied. Simulations were performed at the frequency of 3-10 GHz considering a typical hospital environment, and were validated by on-site measurements with reasonably good agreement. The analysis demonstrated that the characteristics of the on-body radio channel and system performance are subject-specific and are associated with human genders, height, and body mass index. Maximum variations of almost 18.51% are observed in path loss exponent due to change of subject, which gives variations of above 50% in system bit error rate performance. Therefore, careful consideration of subject-specific parameters are necessary for achieving energy efficient and reliable radio links and system performance for body-centric wireless network.</p>","PeriodicalId":55008,"journal":{"name":"IEEE Transactions on Information Technology in Biomedicine","volume":"16 2","pages":"221-7"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TITB.2011.2177526","citationCount":"69","resultStr":"{\"title\":\"Numerical characterization and modeling of subject-specific ultrawideband body-centric radio channels and systems for healthcare applications.\",\"authors\":\"Qammer Hussain Abbasi, Andrea Sani, Akram Alomainy, Yang Hao\",\"doi\":\"10.1109/TITB.2011.2177526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The paper presents a subject-specific radio propagation study and system modeling in wireless body area networks using a simulation tool based on the parallel finite-difference time-domain technique. This technique is well suited to model the radio propagation around complex, inhomogeneous objects such as the human body. The impact of different digital phantoms in on-body radio channel and system performance was studied. Simulations were performed at the frequency of 3-10 GHz considering a typical hospital environment, and were validated by on-site measurements with reasonably good agreement. The analysis demonstrated that the characteristics of the on-body radio channel and system performance are subject-specific and are associated with human genders, height, and body mass index. Maximum variations of almost 18.51% are observed in path loss exponent due to change of subject, which gives variations of above 50% in system bit error rate performance. Therefore, careful consideration of subject-specific parameters are necessary for achieving energy efficient and reliable radio links and system performance for body-centric wireless network.</p>\",\"PeriodicalId\":55008,\"journal\":{\"name\":\"IEEE Transactions on Information Technology in Biomedicine\",\"volume\":\"16 2\",\"pages\":\"221-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TITB.2011.2177526\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Technology in Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TITB.2011.2177526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Technology in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TITB.2011.2177526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/11/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical characterization and modeling of subject-specific ultrawideband body-centric radio channels and systems for healthcare applications.
The paper presents a subject-specific radio propagation study and system modeling in wireless body area networks using a simulation tool based on the parallel finite-difference time-domain technique. This technique is well suited to model the radio propagation around complex, inhomogeneous objects such as the human body. The impact of different digital phantoms in on-body radio channel and system performance was studied. Simulations were performed at the frequency of 3-10 GHz considering a typical hospital environment, and were validated by on-site measurements with reasonably good agreement. The analysis demonstrated that the characteristics of the on-body radio channel and system performance are subject-specific and are associated with human genders, height, and body mass index. Maximum variations of almost 18.51% are observed in path loss exponent due to change of subject, which gives variations of above 50% in system bit error rate performance. Therefore, careful consideration of subject-specific parameters are necessary for achieving energy efficient and reliable radio links and system performance for body-centric wireless network.