{"title":"癸二酸和琥珀酸衍生的塑化PVC在其初始阶段抑制生物污染。","authors":"James Chapman, Fiona Regan","doi":"10.5301/JABB.2011.8787","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>In this work, we report the use of plasticized poly vinylchloride (PVC) as a potential antifouling coating material. The materials contain a variety of sebacic and succinic acid-derived plasticisers providing a variation in molecular shape and structure; diethyl succinate (DESn), di-(2-ethylhexyl sebacate) (DEHS), dibutyl sebacate (DBS), and diethyl sebacate (DES). Each plasticiser from the sebacate group possessed the same basic C10H16O4 moiety with varied dialkyl terminated groups, affording a different range of homologous series plasticisers. This work investigates whether branching of the side substituted alkyl chains on each plasticiser molecule affects microorganism attachment and subsequent fouling.</p><p><strong>Materials and methods: </strong>The plasticized polymers are spin coated to create thin films for testing. In order to determine the antifouling capacity of the materials, the polymer coatings underwent a series of analyses for biomass determination, glycocalyx production, and protein and carbohydrate adsorption. Topological and morphological characterization was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM).</p><p><strong>Results: </strong>After a 7 day laboratory biofouling study it was found that the plasticisers with increased alkyl branching, DESN, and DEHS revealed the greatest degree of prevention of microorganism colonization and attachment thus significantly reducing the initial formation of biofilms by up to 65% in some biofouling assays when compared to the uPVC blank.</p>","PeriodicalId":51074,"journal":{"name":"Journal of Applied Biomaterials & Biomechanics","volume":"9 3","pages":"176-84"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5301/JABB.2011.8787","citationCount":"15","resultStr":"{\"title\":\"Sebacic and succinic acid derived plasticised PVC for the inhibition of biofouling in its initial stages.\",\"authors\":\"James Chapman, Fiona Regan\",\"doi\":\"10.5301/JABB.2011.8787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>In this work, we report the use of plasticized poly vinylchloride (PVC) as a potential antifouling coating material. The materials contain a variety of sebacic and succinic acid-derived plasticisers providing a variation in molecular shape and structure; diethyl succinate (DESn), di-(2-ethylhexyl sebacate) (DEHS), dibutyl sebacate (DBS), and diethyl sebacate (DES). Each plasticiser from the sebacate group possessed the same basic C10H16O4 moiety with varied dialkyl terminated groups, affording a different range of homologous series plasticisers. This work investigates whether branching of the side substituted alkyl chains on each plasticiser molecule affects microorganism attachment and subsequent fouling.</p><p><strong>Materials and methods: </strong>The plasticized polymers are spin coated to create thin films for testing. In order to determine the antifouling capacity of the materials, the polymer coatings underwent a series of analyses for biomass determination, glycocalyx production, and protein and carbohydrate adsorption. Topological and morphological characterization was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM).</p><p><strong>Results: </strong>After a 7 day laboratory biofouling study it was found that the plasticisers with increased alkyl branching, DESN, and DEHS revealed the greatest degree of prevention of microorganism colonization and attachment thus significantly reducing the initial formation of biofilms by up to 65% in some biofouling assays when compared to the uPVC blank.</p>\",\"PeriodicalId\":51074,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Biomechanics\",\"volume\":\"9 3\",\"pages\":\"176-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5301/JABB.2011.8787\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5301/JABB.2011.8787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5301/JABB.2011.8787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sebacic and succinic acid derived plasticised PVC for the inhibition of biofouling in its initial stages.
Aim: In this work, we report the use of plasticized poly vinylchloride (PVC) as a potential antifouling coating material. The materials contain a variety of sebacic and succinic acid-derived plasticisers providing a variation in molecular shape and structure; diethyl succinate (DESn), di-(2-ethylhexyl sebacate) (DEHS), dibutyl sebacate (DBS), and diethyl sebacate (DES). Each plasticiser from the sebacate group possessed the same basic C10H16O4 moiety with varied dialkyl terminated groups, affording a different range of homologous series plasticisers. This work investigates whether branching of the side substituted alkyl chains on each plasticiser molecule affects microorganism attachment and subsequent fouling.
Materials and methods: The plasticized polymers are spin coated to create thin films for testing. In order to determine the antifouling capacity of the materials, the polymer coatings underwent a series of analyses for biomass determination, glycocalyx production, and protein and carbohydrate adsorption. Topological and morphological characterization was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM).
Results: After a 7 day laboratory biofouling study it was found that the plasticisers with increased alkyl branching, DESN, and DEHS revealed the greatest degree of prevention of microorganism colonization and attachment thus significantly reducing the initial formation of biofilms by up to 65% in some biofouling assays when compared to the uPVC blank.