Brett Trost, Anthony Kusalik, Guglielmo Lucchese, Darja Kanduc
{"title":"细菌肽在人类蛋白质组中广泛存在。","authors":"Brett Trost, Anthony Kusalik, Guglielmo Lucchese, Darja Kanduc","doi":"10.4161/self.1.1.9588","DOIUrl":null,"url":null,"abstract":"<p><p>Forty bacterial proteomes-20 pathogens and 20 non-pathogens-were examined for amino acid sequence similarity to the human proteome. All bacterial proteomes, independent of their pathogenicity, share hundreds of nonamer sequences with the human proteome. This overlap is very widespread, with one third of human proteins sharing at least one nonapeptide with one of these bacteria. On the whole, the bacteria-versus-human nonamer overlap is numerically defined by 47,610 total perfect matches disseminated through 10,701 human proteins. These findings open new perspectives on the immune relationship between bacteria and host, and might help our understanding of fundamental phenomena such as self-nonself discrimination and tolerance versus auto-reactivity.</p>","PeriodicalId":89270,"journal":{"name":"Self/nonself","volume":"1 1","pages":"71-74"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/self.1.1.9588","citationCount":"31","resultStr":"{\"title\":\"Bacterial peptides are intensively present throughout the human proteome.\",\"authors\":\"Brett Trost, Anthony Kusalik, Guglielmo Lucchese, Darja Kanduc\",\"doi\":\"10.4161/self.1.1.9588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Forty bacterial proteomes-20 pathogens and 20 non-pathogens-were examined for amino acid sequence similarity to the human proteome. All bacterial proteomes, independent of their pathogenicity, share hundreds of nonamer sequences with the human proteome. This overlap is very widespread, with one third of human proteins sharing at least one nonapeptide with one of these bacteria. On the whole, the bacteria-versus-human nonamer overlap is numerically defined by 47,610 total perfect matches disseminated through 10,701 human proteins. These findings open new perspectives on the immune relationship between bacteria and host, and might help our understanding of fundamental phenomena such as self-nonself discrimination and tolerance versus auto-reactivity.</p>\",\"PeriodicalId\":89270,\"journal\":{\"name\":\"Self/nonself\",\"volume\":\"1 1\",\"pages\":\"71-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/self.1.1.9588\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Self/nonself\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/self.1.1.9588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Self/nonself","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/self.1.1.9588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bacterial peptides are intensively present throughout the human proteome.
Forty bacterial proteomes-20 pathogens and 20 non-pathogens-were examined for amino acid sequence similarity to the human proteome. All bacterial proteomes, independent of their pathogenicity, share hundreds of nonamer sequences with the human proteome. This overlap is very widespread, with one third of human proteins sharing at least one nonapeptide with one of these bacteria. On the whole, the bacteria-versus-human nonamer overlap is numerically defined by 47,610 total perfect matches disseminated through 10,701 human proteins. These findings open new perspectives on the immune relationship between bacteria and host, and might help our understanding of fundamental phenomena such as self-nonself discrimination and tolerance versus auto-reactivity.