{"title":"硬皮病的自身免疫机制和氧化应激的作用。","authors":"Toshiyuki Yamamoto","doi":"10.4161/self.2.1.14058","DOIUrl":null,"url":null,"abstract":"<p><p>Scleroderma is a fibrotic condition characterized by immunological abnormalities, vascular injury and increased accumulation of extracellular matrix proteins in the skin. Although the etiology of scleroderma has not yet been fully elucidated, a growing body of evidence suggests that extracellular matrix overproduction by activated fibroblasts results from complex interactions among endothelial cells, lymphocytes, macrophages and fibroblasts via a number of mediators, such as cytokines, chemokines and growth factors. Recent investigations have further suggested that reactive oxygen species (ROS) are involved and play a role of autoimmunology in scleroderma. In this review, current findings on the autoimmune mechanisms in the pathophysiology of scleroderma are described.</p>","PeriodicalId":89270,"journal":{"name":"Self/nonself","volume":"2 1","pages":"4-10"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/self.2.1.14058","citationCount":"27","resultStr":"{\"title\":\"Autoimmune mechanisms of scleroderma and a role of oxidative stress.\",\"authors\":\"Toshiyuki Yamamoto\",\"doi\":\"10.4161/self.2.1.14058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scleroderma is a fibrotic condition characterized by immunological abnormalities, vascular injury and increased accumulation of extracellular matrix proteins in the skin. Although the etiology of scleroderma has not yet been fully elucidated, a growing body of evidence suggests that extracellular matrix overproduction by activated fibroblasts results from complex interactions among endothelial cells, lymphocytes, macrophages and fibroblasts via a number of mediators, such as cytokines, chemokines and growth factors. Recent investigations have further suggested that reactive oxygen species (ROS) are involved and play a role of autoimmunology in scleroderma. In this review, current findings on the autoimmune mechanisms in the pathophysiology of scleroderma are described.</p>\",\"PeriodicalId\":89270,\"journal\":{\"name\":\"Self/nonself\",\"volume\":\"2 1\",\"pages\":\"4-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/self.2.1.14058\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Self/nonself\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/self.2.1.14058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Self/nonself","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/self.2.1.14058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autoimmune mechanisms of scleroderma and a role of oxidative stress.
Scleroderma is a fibrotic condition characterized by immunological abnormalities, vascular injury and increased accumulation of extracellular matrix proteins in the skin. Although the etiology of scleroderma has not yet been fully elucidated, a growing body of evidence suggests that extracellular matrix overproduction by activated fibroblasts results from complex interactions among endothelial cells, lymphocytes, macrophages and fibroblasts via a number of mediators, such as cytokines, chemokines and growth factors. Recent investigations have further suggested that reactive oxygen species (ROS) are involved and play a role of autoimmunology in scleroderma. In this review, current findings on the autoimmune mechanisms in the pathophysiology of scleroderma are described.