{"title":"动态校对和非自肽的搜索。","authors":"Andreas Jansson","doi":"10.4161/self.2.1.15362","DOIUrl":null,"url":null,"abstract":"<p><p>The T cells scan the surface of antigen-presenting cells with their T cell receptors (TCR) in order to find and respond to specific peptide-major histocompatibility complexes (pMHC). Since mainly self-peptides are expressed on antigen-presenting cells, the T cells must utilize sensitive mechanisms in order to quickly discriminate between self and nonself-peptides. A range of different models have been proposed to account for this process. Due to the experimental inconsistency of how T cells respond to altered peptides it has been difficult to validate the competing models. Recent models, based on the kinetic proofreading model, propose that a short life-time of the TCR/pMHC complexes may be compensated by fast rebinding of the individual molecules. Hence, both the on- and off-rate involved in the interaction between pMHCs and TCRs will determine the fate of the T cell discrimination. I here briefly review some of the proposed models on T cell discrimination and scanning, and discuss the significance of determining self-peptide kinetics to validate the different models.</p>","PeriodicalId":89270,"journal":{"name":"Self/nonself","volume":"2 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/self.2.1.15362","citationCount":"11","resultStr":"{\"title\":\"Kinetic proofreading and the search for nonself-peptides.\",\"authors\":\"Andreas Jansson\",\"doi\":\"10.4161/self.2.1.15362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The T cells scan the surface of antigen-presenting cells with their T cell receptors (TCR) in order to find and respond to specific peptide-major histocompatibility complexes (pMHC). Since mainly self-peptides are expressed on antigen-presenting cells, the T cells must utilize sensitive mechanisms in order to quickly discriminate between self and nonself-peptides. A range of different models have been proposed to account for this process. Due to the experimental inconsistency of how T cells respond to altered peptides it has been difficult to validate the competing models. Recent models, based on the kinetic proofreading model, propose that a short life-time of the TCR/pMHC complexes may be compensated by fast rebinding of the individual molecules. Hence, both the on- and off-rate involved in the interaction between pMHCs and TCRs will determine the fate of the T cell discrimination. I here briefly review some of the proposed models on T cell discrimination and scanning, and discuss the significance of determining self-peptide kinetics to validate the different models.</p>\",\"PeriodicalId\":89270,\"journal\":{\"name\":\"Self/nonself\",\"volume\":\"2 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/self.2.1.15362\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Self/nonself\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/self.2.1.15362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Self/nonself","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/self.2.1.15362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetic proofreading and the search for nonself-peptides.
The T cells scan the surface of antigen-presenting cells with their T cell receptors (TCR) in order to find and respond to specific peptide-major histocompatibility complexes (pMHC). Since mainly self-peptides are expressed on antigen-presenting cells, the T cells must utilize sensitive mechanisms in order to quickly discriminate between self and nonself-peptides. A range of different models have been proposed to account for this process. Due to the experimental inconsistency of how T cells respond to altered peptides it has been difficult to validate the competing models. Recent models, based on the kinetic proofreading model, propose that a short life-time of the TCR/pMHC complexes may be compensated by fast rebinding of the individual molecules. Hence, both the on- and off-rate involved in the interaction between pMHCs and TCRs will determine the fate of the T cell discrimination. I here briefly review some of the proposed models on T cell discrimination and scanning, and discuss the significance of determining self-peptide kinetics to validate the different models.