Andreas Mueller, Gian Candrian, Venke Arntsberg Grane, Juri D Kropotov, Valery A Ponomarev, Gian-Marco Baschera
{"title":"使用独立的ERP组件和支持向量机区分ADHD成年人和对照组:一项验证研究。","authors":"Andreas Mueller, Gian Candrian, Venke Arntsberg Grane, Juri D Kropotov, Valery A Ponomarev, Gian-Marco Baschera","doi":"10.1186/1753-4631-5-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There are numerous event-related potential (ERP) studies in relation to attention-deficit hyperactivity disorder (ADHD), and a substantial number of ERP correlates of the disorder have been identified. However, most of the studies are limited to group differences in children. Independent component analysis (ICA) separates a set of mixed event-related potentials into a corresponding set of statistically independent source signals, which are likely to represent different functional processes. Using a support vector machine (SVM), a classification method originating from machine learning, this study aimed at investigating the use of such independent ERP components in differentiating adult ADHD patients from non-clinical controls by selecting a most informative feature set. A second aim was to validate the predictive power of the SVM classifier by means of an independent ADHD sample recruited at a different laboratory.</p><p><strong>Methods: </strong>Two groups of age-matched adults (75 ADHD, 75 controls) performed a visual two stimulus go/no-go task. ERP responses were decomposed into independent components, and a selected set of independent ERP component features was used for SVM classification.</p><p><strong>Results: </strong>Using a 10-fold cross-validation approach, classification accuracy was 91%. Predictive power of the SVM classifier was verified on the basis of the independent ADHD sample (17 ADHD patients), resulting in a classification accuracy of 94%. The latency and amplitude measures which in combination differentiated best between ADHD patients and non-clinical subjects primarily originated from independent components associated with inhibitory and other executive operations.</p><p><strong>Conclusions: </strong>This study shows that ERPs can substantially contribute to the diagnosis of ADHD when combined with up-to-date methods.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"5 ","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-5-5","citationCount":"85","resultStr":"{\"title\":\"Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: a validation study.\",\"authors\":\"Andreas Mueller, Gian Candrian, Venke Arntsberg Grane, Juri D Kropotov, Valery A Ponomarev, Gian-Marco Baschera\",\"doi\":\"10.1186/1753-4631-5-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>There are numerous event-related potential (ERP) studies in relation to attention-deficit hyperactivity disorder (ADHD), and a substantial number of ERP correlates of the disorder have been identified. However, most of the studies are limited to group differences in children. Independent component analysis (ICA) separates a set of mixed event-related potentials into a corresponding set of statistically independent source signals, which are likely to represent different functional processes. Using a support vector machine (SVM), a classification method originating from machine learning, this study aimed at investigating the use of such independent ERP components in differentiating adult ADHD patients from non-clinical controls by selecting a most informative feature set. A second aim was to validate the predictive power of the SVM classifier by means of an independent ADHD sample recruited at a different laboratory.</p><p><strong>Methods: </strong>Two groups of age-matched adults (75 ADHD, 75 controls) performed a visual two stimulus go/no-go task. ERP responses were decomposed into independent components, and a selected set of independent ERP component features was used for SVM classification.</p><p><strong>Results: </strong>Using a 10-fold cross-validation approach, classification accuracy was 91%. Predictive power of the SVM classifier was verified on the basis of the independent ADHD sample (17 ADHD patients), resulting in a classification accuracy of 94%. The latency and amplitude measures which in combination differentiated best between ADHD patients and non-clinical subjects primarily originated from independent components associated with inhibitory and other executive operations.</p><p><strong>Conclusions: </strong>This study shows that ERPs can substantially contribute to the diagnosis of ADHD when combined with up-to-date methods.</p>\",\"PeriodicalId\":87480,\"journal\":{\"name\":\"Nonlinear biomedical physics\",\"volume\":\"5 \",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1753-4631-5-5\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear biomedical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1753-4631-5-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear biomedical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1753-4631-5-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: a validation study.
Background: There are numerous event-related potential (ERP) studies in relation to attention-deficit hyperactivity disorder (ADHD), and a substantial number of ERP correlates of the disorder have been identified. However, most of the studies are limited to group differences in children. Independent component analysis (ICA) separates a set of mixed event-related potentials into a corresponding set of statistically independent source signals, which are likely to represent different functional processes. Using a support vector machine (SVM), a classification method originating from machine learning, this study aimed at investigating the use of such independent ERP components in differentiating adult ADHD patients from non-clinical controls by selecting a most informative feature set. A second aim was to validate the predictive power of the SVM classifier by means of an independent ADHD sample recruited at a different laboratory.
Methods: Two groups of age-matched adults (75 ADHD, 75 controls) performed a visual two stimulus go/no-go task. ERP responses were decomposed into independent components, and a selected set of independent ERP component features was used for SVM classification.
Results: Using a 10-fold cross-validation approach, classification accuracy was 91%. Predictive power of the SVM classifier was verified on the basis of the independent ADHD sample (17 ADHD patients), resulting in a classification accuracy of 94%. The latency and amplitude measures which in combination differentiated best between ADHD patients and non-clinical subjects primarily originated from independent components associated with inhibitory and other executive operations.
Conclusions: This study shows that ERPs can substantially contribute to the diagnosis of ADHD when combined with up-to-date methods.