{"title":"氨基酸丙炔酯在固相多肽合成中的应用。","authors":"Ramesh Ramapanicker, Rohit Gupta, Rajendran Megha, Srinivasan Chandrasekaran","doi":"10.1155/2011/854952","DOIUrl":null,"url":null,"abstract":"<p><p>Propargyl esters are employed as effective protecting groups for the carboxyl group during solution-phase peptide synthesis. The propargyl ester groups can be introduced onto free amino acids by treating them with propargyl alcohol saturated with HCl. The reaction between propargyl groups and tetrathiomolybdate is exploited to deblock the propargyl esters. The removal of the propargyl group with the neutral reagent tetrathiomolybdate ensures that most of the other protecting groups used in peptide synthesis are untouched. Both acid labile and base labile protecting groups can be removed in the presence of a propargyl ester. Amino acids protected as propargyl esters are employed to synthesize di- to tetrapeptides in solution-phase demonstrating the possible synthetic utilities of the methodology. The methodology described here could be a valuable addition to currently available strategies for peptide synthesis.</p>","PeriodicalId":14239,"journal":{"name":"International Journal of Peptides","volume":"2011 ","pages":"854952"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2011/854952","citationCount":"1","resultStr":"{\"title\":\"Applications of propargyl esters of amino acids in solution-phase Peptide synthesis.\",\"authors\":\"Ramesh Ramapanicker, Rohit Gupta, Rajendran Megha, Srinivasan Chandrasekaran\",\"doi\":\"10.1155/2011/854952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Propargyl esters are employed as effective protecting groups for the carboxyl group during solution-phase peptide synthesis. The propargyl ester groups can be introduced onto free amino acids by treating them with propargyl alcohol saturated with HCl. The reaction between propargyl groups and tetrathiomolybdate is exploited to deblock the propargyl esters. The removal of the propargyl group with the neutral reagent tetrathiomolybdate ensures that most of the other protecting groups used in peptide synthesis are untouched. Both acid labile and base labile protecting groups can be removed in the presence of a propargyl ester. Amino acids protected as propargyl esters are employed to synthesize di- to tetrapeptides in solution-phase demonstrating the possible synthetic utilities of the methodology. The methodology described here could be a valuable addition to currently available strategies for peptide synthesis.</p>\",\"PeriodicalId\":14239,\"journal\":{\"name\":\"International Journal of Peptides\",\"volume\":\"2011 \",\"pages\":\"854952\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2011/854952\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Peptides\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/854952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/6/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Peptides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/854952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/6/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Applications of propargyl esters of amino acids in solution-phase Peptide synthesis.
Propargyl esters are employed as effective protecting groups for the carboxyl group during solution-phase peptide synthesis. The propargyl ester groups can be introduced onto free amino acids by treating them with propargyl alcohol saturated with HCl. The reaction between propargyl groups and tetrathiomolybdate is exploited to deblock the propargyl esters. The removal of the propargyl group with the neutral reagent tetrathiomolybdate ensures that most of the other protecting groups used in peptide synthesis are untouched. Both acid labile and base labile protecting groups can be removed in the presence of a propargyl ester. Amino acids protected as propargyl esters are employed to synthesize di- to tetrapeptides in solution-phase demonstrating the possible synthetic utilities of the methodology. The methodology described here could be a valuable addition to currently available strategies for peptide synthesis.