{"title":"克氏锥虫衍生神经营养因子:在神经修复和神经保护中的作用。","authors":"Marina V Chuenkova, Mercio Pereiraperrin","doi":"10.4303/jnp/N100507","DOIUrl":null,"url":null,"abstract":"<p><p>Some patients infected with the parasite Try-panosoma cruzi develop chronic Chagas' disease, while others remain asymptomatic for life. Although pathological mechanisms that govern disease progression remain unclear, the balance between degeneration and regeneration in the peripheral nervous system seems to contribute to the different clinical outcomes. This review focuses on certain new aspects of host-parasite interactions related to regeneration in the host nervous system induced by the trans-sialidase of T. cruzi, also known as a parasite-derived neurotrophic factor (PDNF). PDNF plays multiple roles in T. cruzi infection, ranging from immunosuppression to functional mimicry of mammalian neurotrophic factors and inhibition of apoptosis. PDNF affinity to neurotrophin Trk receptors provide sustained activation of cellular survival mechanisms resulting in neuroprotection and neuronal repair, resistance to cytotoxic insults and enhancement of neuritogenesis. Such unique PDNF-elicited regenerative responses likely prolong parasite persistence in infected tissues while reducing neuropathology in Chagas' disease.</p>","PeriodicalId":73863,"journal":{"name":"Journal of neuroparasitology","volume":" ","pages":"55-60"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092389/pdf/nihms254024.pdf","citationCount":"8","resultStr":"{\"title\":\"Trypanosoma cruzi-Derived Neurotrophic Factor: Role in Neural Repair and Neuroprotection.\",\"authors\":\"Marina V Chuenkova, Mercio Pereiraperrin\",\"doi\":\"10.4303/jnp/N100507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Some patients infected with the parasite Try-panosoma cruzi develop chronic Chagas' disease, while others remain asymptomatic for life. Although pathological mechanisms that govern disease progression remain unclear, the balance between degeneration and regeneration in the peripheral nervous system seems to contribute to the different clinical outcomes. This review focuses on certain new aspects of host-parasite interactions related to regeneration in the host nervous system induced by the trans-sialidase of T. cruzi, also known as a parasite-derived neurotrophic factor (PDNF). PDNF plays multiple roles in T. cruzi infection, ranging from immunosuppression to functional mimicry of mammalian neurotrophic factors and inhibition of apoptosis. PDNF affinity to neurotrophin Trk receptors provide sustained activation of cellular survival mechanisms resulting in neuroprotection and neuronal repair, resistance to cytotoxic insults and enhancement of neuritogenesis. Such unique PDNF-elicited regenerative responses likely prolong parasite persistence in infected tissues while reducing neuropathology in Chagas' disease.</p>\",\"PeriodicalId\":73863,\"journal\":{\"name\":\"Journal of neuroparasitology\",\"volume\":\" \",\"pages\":\"55-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092389/pdf/nihms254024.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuroparasitology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4303/jnp/N100507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroparasitology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4303/jnp/N100507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Trypanosoma cruzi-Derived Neurotrophic Factor: Role in Neural Repair and Neuroprotection.
Some patients infected with the parasite Try-panosoma cruzi develop chronic Chagas' disease, while others remain asymptomatic for life. Although pathological mechanisms that govern disease progression remain unclear, the balance between degeneration and regeneration in the peripheral nervous system seems to contribute to the different clinical outcomes. This review focuses on certain new aspects of host-parasite interactions related to regeneration in the host nervous system induced by the trans-sialidase of T. cruzi, also known as a parasite-derived neurotrophic factor (PDNF). PDNF plays multiple roles in T. cruzi infection, ranging from immunosuppression to functional mimicry of mammalian neurotrophic factors and inhibition of apoptosis. PDNF affinity to neurotrophin Trk receptors provide sustained activation of cellular survival mechanisms resulting in neuroprotection and neuronal repair, resistance to cytotoxic insults and enhancement of neuritogenesis. Such unique PDNF-elicited regenerative responses likely prolong parasite persistence in infected tissues while reducing neuropathology in Chagas' disease.