采用重力成丝工艺构建胶原纤维。

Fu I Tung, Chih T Chiu, Yi P Chang, Yng J Wang
{"title":"采用重力成丝工艺构建胶原纤维。","authors":"Fu I Tung,&nbsp;Chih T Chiu,&nbsp;Yi P Chang,&nbsp;Yng J Wang","doi":"10.3109/10731199.2011.574634","DOIUrl":null,"url":null,"abstract":"<p><p>Fibers comprised of reconstituted type I collagen were prepared by a gravity filament forming process and crosslinked with 0.1% glutaraldehyde. These fibers have a crosslinking index of about 90% (89.89 ± 1.82%) with higher denature temperature (74.43 ± 0.08°C) as compared to that without glutaraldehyde treatment (52.1 ± 0.17°C). The ultimate tensile strength of the collagen fibers increases from 99.4 ± 12.9 to 174.4 ± 9.0 MPa after glutaraldehyde-crosslinking. L929 fibroblast cells were seeded and cultured using these newly developed collagen fibers. The fibroblast cells proliferated well and covered all surface areas of the collagen fiber. These collagen fibers have a great potential for application in 3-D tissue engineering.</p>","PeriodicalId":8413,"journal":{"name":"Artificial cells, blood substitutes, and immobilization biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10731199.2011.574634","citationCount":"0","resultStr":"{\"title\":\"Collagen fibers constructed by gravity filament forming process.\",\"authors\":\"Fu I Tung,&nbsp;Chih T Chiu,&nbsp;Yi P Chang,&nbsp;Yng J Wang\",\"doi\":\"10.3109/10731199.2011.574634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fibers comprised of reconstituted type I collagen were prepared by a gravity filament forming process and crosslinked with 0.1% glutaraldehyde. These fibers have a crosslinking index of about 90% (89.89 ± 1.82%) with higher denature temperature (74.43 ± 0.08°C) as compared to that without glutaraldehyde treatment (52.1 ± 0.17°C). The ultimate tensile strength of the collagen fibers increases from 99.4 ± 12.9 to 174.4 ± 9.0 MPa after glutaraldehyde-crosslinking. L929 fibroblast cells were seeded and cultured using these newly developed collagen fibers. The fibroblast cells proliferated well and covered all surface areas of the collagen fiber. These collagen fibers have a great potential for application in 3-D tissue engineering.</p>\",\"PeriodicalId\":8413,\"journal\":{\"name\":\"Artificial cells, blood substitutes, and immobilization biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/10731199.2011.574634\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial cells, blood substitutes, and immobilization biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/10731199.2011.574634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial cells, blood substitutes, and immobilization biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10731199.2011.574634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/5/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以0.1%戊二醛为交联剂,采用重力成丝法制备了由重组型胶原组成的纤维。与未经戊二醛处理的纤维(52.1±0.17℃)相比,变性温度(74.43±0.08℃)较高,交联指数约为90%(89.89±1.82%)。经戊二醛交联后,胶原纤维的抗拉强度由99.4±12.9 MPa提高到174.4±9.0 MPa。用这些新形成的胶原纤维播种培养成纤维细胞L929。成纤维细胞增殖良好,覆盖了胶原纤维的所有表面区域。这些胶原纤维在三维组织工程中具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collagen fibers constructed by gravity filament forming process.

Fibers comprised of reconstituted type I collagen were prepared by a gravity filament forming process and crosslinked with 0.1% glutaraldehyde. These fibers have a crosslinking index of about 90% (89.89 ± 1.82%) with higher denature temperature (74.43 ± 0.08°C) as compared to that without glutaraldehyde treatment (52.1 ± 0.17°C). The ultimate tensile strength of the collagen fibers increases from 99.4 ± 12.9 to 174.4 ± 9.0 MPa after glutaraldehyde-crosslinking. L929 fibroblast cells were seeded and cultured using these newly developed collagen fibers. The fibroblast cells proliferated well and covered all surface areas of the collagen fiber. These collagen fibers have a great potential for application in 3-D tissue engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信