Andrea Montanino , Sanne van Overbeeke , Anna Pandolfi
{"title":"激光角膜屈光手术的生物力学建模","authors":"Andrea Montanino , Sanne van Overbeeke , Anna Pandolfi","doi":"10.1016/j.jmbbm.2023.105998","DOIUrl":null,"url":null,"abstract":"<div><p>We present a finite element<span> model of the human cornea used to simulate corneal refractive surgery according to the three most diffused laser procedures, i. e., photo-refractive keratectomy (PRK), laser in-situ keratomileusis (LASIK) and small incision lenticule extraction (SMILE). The geometry used for the model is patient-specific in terms of anterior and posterior surfaces of the cornea and intrastromal surfaces originated by the planned intervention. The customization<span> of the solid model prior to finite element discretization avoids the struggling difficulties associated with the geometrical modification induced by cutting, incision and thinning. Important features of the model include the identification of the stress-free geometry and an adaptive compliant limbus to account for the surrounding tissues. By the way of simplification, we adopt a Hooke material model extended to the finite kinematics, and consider only the preoperative and short-term postoperative conditions, disregarding the remodeling and material evolution aspects typical of biological tissues. Albeit simple and incomplete, the approach demonstrates that the post-operative biomechanical state of the cornea, after the creation of a flap or the removal of a small lenticule, is strongly modified with respect to the preoperative state and characterized by displacement irregularities and stress localizations.</span></span></p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"145 ","pages":"Article 105998"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the biomechanics of laser corneal refractive surgery\",\"authors\":\"Andrea Montanino , Sanne van Overbeeke , Anna Pandolfi\",\"doi\":\"10.1016/j.jmbbm.2023.105998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a finite element<span> model of the human cornea used to simulate corneal refractive surgery according to the three most diffused laser procedures, i. e., photo-refractive keratectomy (PRK), laser in-situ keratomileusis (LASIK) and small incision lenticule extraction (SMILE). The geometry used for the model is patient-specific in terms of anterior and posterior surfaces of the cornea and intrastromal surfaces originated by the planned intervention. The customization<span> of the solid model prior to finite element discretization avoids the struggling difficulties associated with the geometrical modification induced by cutting, incision and thinning. Important features of the model include the identification of the stress-free geometry and an adaptive compliant limbus to account for the surrounding tissues. By the way of simplification, we adopt a Hooke material model extended to the finite kinematics, and consider only the preoperative and short-term postoperative conditions, disregarding the remodeling and material evolution aspects typical of biological tissues. Albeit simple and incomplete, the approach demonstrates that the post-operative biomechanical state of the cornea, after the creation of a flap or the removal of a small lenticule, is strongly modified with respect to the preoperative state and characterized by displacement irregularities and stress localizations.</span></span></p></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"145 \",\"pages\":\"Article 105998\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175161612300351X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175161612300351X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Modeling the biomechanics of laser corneal refractive surgery
We present a finite element model of the human cornea used to simulate corneal refractive surgery according to the three most diffused laser procedures, i. e., photo-refractive keratectomy (PRK), laser in-situ keratomileusis (LASIK) and small incision lenticule extraction (SMILE). The geometry used for the model is patient-specific in terms of anterior and posterior surfaces of the cornea and intrastromal surfaces originated by the planned intervention. The customization of the solid model prior to finite element discretization avoids the struggling difficulties associated with the geometrical modification induced by cutting, incision and thinning. Important features of the model include the identification of the stress-free geometry and an adaptive compliant limbus to account for the surrounding tissues. By the way of simplification, we adopt a Hooke material model extended to the finite kinematics, and consider only the preoperative and short-term postoperative conditions, disregarding the remodeling and material evolution aspects typical of biological tissues. Albeit simple and incomplete, the approach demonstrates that the post-operative biomechanical state of the cornea, after the creation of a flap or the removal of a small lenticule, is strongly modified with respect to the preoperative state and characterized by displacement irregularities and stress localizations.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.