{"title":"重新思考再同步:探索超越壁运动控制的心脏再同步机制","authors":"Khalid Chakir, David A. Kass","doi":"10.1016/j.ddmec.2010.07.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>Cardiac resynchronization<span> (CRT) is a widely used clinical treatment for heart failure patients with depressed function and discoordinate contraction due to conduction delay. It is unique among heart failure treatments as it both acutely and chronically enhances systolic function and also prolongs survival. While improved chamber mechano-energetics has been considered a primary mechanism for CRT benefit, new animal model data are revealing novel and in many instances unique cellular and </span></span>molecular modifications<span> from the treatment. Examples of these changes are the reversal of marked regional heterogeneity of the transcriptome<span><span><span> and stress kinase signaling, improved ion channel function involved with electrical </span>repolarization, enhanced sarcomere function and calcium handling and up-regulation of beta-adrenergic responses, and improved mitochondrial energetic efficiency associated with targeted changes in the mitochondrial </span>proteome. Exploration of these mechanisms may reveal key insights into how CRT can indeed get the failing heart to contract more and perform more work, yet not worsen long-term failure. These changes may provide a more biological marker for both the appropriate patients for CRT and point the way for new therapeutic avenues for heart failure in general.</span></span></p></div>","PeriodicalId":72843,"journal":{"name":"Drug discovery today. Disease mechanisms","volume":"7 2","pages":"Pages e103-e107"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddmec.2010.07.003","citationCount":"7","resultStr":"{\"title\":\"Rethinking resynch: Exploring mechanisms of cardiac resynchronization beyond wall motion control\",\"authors\":\"Khalid Chakir, David A. Kass\",\"doi\":\"10.1016/j.ddmec.2010.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Cardiac resynchronization<span> (CRT) is a widely used clinical treatment for heart failure patients with depressed function and discoordinate contraction due to conduction delay. It is unique among heart failure treatments as it both acutely and chronically enhances systolic function and also prolongs survival. While improved chamber mechano-energetics has been considered a primary mechanism for CRT benefit, new animal model data are revealing novel and in many instances unique cellular and </span></span>molecular modifications<span> from the treatment. Examples of these changes are the reversal of marked regional heterogeneity of the transcriptome<span><span><span> and stress kinase signaling, improved ion channel function involved with electrical </span>repolarization, enhanced sarcomere function and calcium handling and up-regulation of beta-adrenergic responses, and improved mitochondrial energetic efficiency associated with targeted changes in the mitochondrial </span>proteome. Exploration of these mechanisms may reveal key insights into how CRT can indeed get the failing heart to contract more and perform more work, yet not worsen long-term failure. These changes may provide a more biological marker for both the appropriate patients for CRT and point the way for new therapeutic avenues for heart failure in general.</span></span></p></div>\",\"PeriodicalId\":72843,\"journal\":{\"name\":\"Drug discovery today. Disease mechanisms\",\"volume\":\"7 2\",\"pages\":\"Pages e103-e107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddmec.2010.07.003\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug discovery today. Disease mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740676510000131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug discovery today. Disease mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740676510000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rethinking resynch: Exploring mechanisms of cardiac resynchronization beyond wall motion control
Cardiac resynchronization (CRT) is a widely used clinical treatment for heart failure patients with depressed function and discoordinate contraction due to conduction delay. It is unique among heart failure treatments as it both acutely and chronically enhances systolic function and also prolongs survival. While improved chamber mechano-energetics has been considered a primary mechanism for CRT benefit, new animal model data are revealing novel and in many instances unique cellular and molecular modifications from the treatment. Examples of these changes are the reversal of marked regional heterogeneity of the transcriptome and stress kinase signaling, improved ion channel function involved with electrical repolarization, enhanced sarcomere function and calcium handling and up-regulation of beta-adrenergic responses, and improved mitochondrial energetic efficiency associated with targeted changes in the mitochondrial proteome. Exploration of these mechanisms may reveal key insights into how CRT can indeed get the failing heart to contract more and perform more work, yet not worsen long-term failure. These changes may provide a more biological marker for both the appropriate patients for CRT and point the way for new therapeutic avenues for heart failure in general.