{"title":"衡量传染病短期控制对流行高峰影响的理论基础。","authors":"Ryosuke Omori, Hiroshi Nishiura","doi":"10.1186/1742-4682-8-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While many pandemic preparedness plans have promoted disease control effort to lower and delay an epidemic peak, analytical methods for determining the required control effort and making statistical inferences have yet to be sought. As a first step to address this issue, we present a theoretical basis on which to assess the impact of an early intervention on the epidemic peak, employing a simple epidemic model.</p><p><strong>Methods: </strong>We focus on estimating the impact of an early control effort (e.g. unsuccessful containment), assuming that the transmission rate abruptly increases when control is discontinued. We provide analytical expressions for magnitude and time of the epidemic peak, employing approximate logistic and logarithmic-form solutions for the latter. Empirical influenza data (H1N1-2009) in Japan are analyzed to estimate the effect of the summer holiday period in lowering and delaying the peak in 2009.</p><p><strong>Results: </strong>Our model estimates that the epidemic peak of the 2009 pandemic was delayed for 21 days due to summer holiday. Decline in peak appears to be a nonlinear function of control-associated reduction in the reproduction number. Peak delay is shown to critically depend on the fraction of initially immune individuals.</p><p><strong>Conclusions: </strong>The proposed modeling approaches offer methodological avenues to assess empirical data and to objectively estimate required control effort to lower and delay an epidemic peak. Analytical findings support a critical need to conduct population-wide serological survey as a prior requirement for estimating the time of peak.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":" ","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1742-4682-8-2","citationCount":"17","resultStr":"{\"title\":\"Theoretical basis to measure the impact of short-lasting control of an infectious disease on the epidemic peak.\",\"authors\":\"Ryosuke Omori, Hiroshi Nishiura\",\"doi\":\"10.1186/1742-4682-8-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>While many pandemic preparedness plans have promoted disease control effort to lower and delay an epidemic peak, analytical methods for determining the required control effort and making statistical inferences have yet to be sought. As a first step to address this issue, we present a theoretical basis on which to assess the impact of an early intervention on the epidemic peak, employing a simple epidemic model.</p><p><strong>Methods: </strong>We focus on estimating the impact of an early control effort (e.g. unsuccessful containment), assuming that the transmission rate abruptly increases when control is discontinued. We provide analytical expressions for magnitude and time of the epidemic peak, employing approximate logistic and logarithmic-form solutions for the latter. Empirical influenza data (H1N1-2009) in Japan are analyzed to estimate the effect of the summer holiday period in lowering and delaying the peak in 2009.</p><p><strong>Results: </strong>Our model estimates that the epidemic peak of the 2009 pandemic was delayed for 21 days due to summer holiday. Decline in peak appears to be a nonlinear function of control-associated reduction in the reproduction number. Peak delay is shown to critically depend on the fraction of initially immune individuals.</p><p><strong>Conclusions: </strong>The proposed modeling approaches offer methodological avenues to assess empirical data and to objectively estimate required control effort to lower and delay an epidemic peak. Analytical findings support a critical need to conduct population-wide serological survey as a prior requirement for estimating the time of peak.</p>\",\"PeriodicalId\":51195,\"journal\":{\"name\":\"Theoretical Biology and Medical Modelling\",\"volume\":\" \",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1742-4682-8-2\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Biology and Medical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1742-4682-8-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1742-4682-8-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Theoretical basis to measure the impact of short-lasting control of an infectious disease on the epidemic peak.
Background: While many pandemic preparedness plans have promoted disease control effort to lower and delay an epidemic peak, analytical methods for determining the required control effort and making statistical inferences have yet to be sought. As a first step to address this issue, we present a theoretical basis on which to assess the impact of an early intervention on the epidemic peak, employing a simple epidemic model.
Methods: We focus on estimating the impact of an early control effort (e.g. unsuccessful containment), assuming that the transmission rate abruptly increases when control is discontinued. We provide analytical expressions for magnitude and time of the epidemic peak, employing approximate logistic and logarithmic-form solutions for the latter. Empirical influenza data (H1N1-2009) in Japan are analyzed to estimate the effect of the summer holiday period in lowering and delaying the peak in 2009.
Results: Our model estimates that the epidemic peak of the 2009 pandemic was delayed for 21 days due to summer holiday. Decline in peak appears to be a nonlinear function of control-associated reduction in the reproduction number. Peak delay is shown to critically depend on the fraction of initially immune individuals.
Conclusions: The proposed modeling approaches offer methodological avenues to assess empirical data and to objectively estimate required control effort to lower and delay an epidemic peak. Analytical findings support a critical need to conduct population-wide serological survey as a prior requirement for estimating the time of peak.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.