{"title":"光导siRNA基因沉默的含环糊精聚合物递送系统。","authors":"Sigurd Leinaes Bøe, Ane Sager Longva, Eivind Hovig","doi":"10.1089/oli.2010.0230","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we have investigated the possibility of combining a cyclodextrin-containing polymer (CDP) with siRNA molecules to modulate gene expression in a light-directed manner through photochemical internalization (PCI) technology. We utilized S100A4 as a model gene to evaluate the efficacy of gene silencing. After optimization of carrier/cargo ratio and illumination dose, real-time reverse transcriptase-polymerase chain reaction data showed between 80% and 90% silencing in the siRNA samples treated with PCI compared with untreated control. In contrast, only a 0%-10% silencing effect was detected in the siRNA samples without PCI treatment, demonstrating the potency of light-specific delivery of siRNA molecules. Light-directed siRNA delivery was shown in 2 different cell lines with corresponding potency. Further, time-lapse results demonstrated maximum gene silencing only at 5 hours after endosomal release, implying, for example, rapid carrier decondensation when using the CDP. This work represents a first success in using a CDP delivery agent, without endosomolytic properties for siRNA gene silencing in a light-directed manner, opening the opportunity to use CDPs for light-directed siRNA gene silencing in vivo.</p>","PeriodicalId":19523,"journal":{"name":"Oligonucleotides","volume":"20 4","pages":"175-82"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/oli.2010.0230","citationCount":"26","resultStr":"{\"title\":\"Cyclodextrin-containing polymer delivery system for light-directed siRNA gene silencing.\",\"authors\":\"Sigurd Leinaes Bøe, Ane Sager Longva, Eivind Hovig\",\"doi\":\"10.1089/oli.2010.0230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we have investigated the possibility of combining a cyclodextrin-containing polymer (CDP) with siRNA molecules to modulate gene expression in a light-directed manner through photochemical internalization (PCI) technology. We utilized S100A4 as a model gene to evaluate the efficacy of gene silencing. After optimization of carrier/cargo ratio and illumination dose, real-time reverse transcriptase-polymerase chain reaction data showed between 80% and 90% silencing in the siRNA samples treated with PCI compared with untreated control. In contrast, only a 0%-10% silencing effect was detected in the siRNA samples without PCI treatment, demonstrating the potency of light-specific delivery of siRNA molecules. Light-directed siRNA delivery was shown in 2 different cell lines with corresponding potency. Further, time-lapse results demonstrated maximum gene silencing only at 5 hours after endosomal release, implying, for example, rapid carrier decondensation when using the CDP. This work represents a first success in using a CDP delivery agent, without endosomolytic properties for siRNA gene silencing in a light-directed manner, opening the opportunity to use CDPs for light-directed siRNA gene silencing in vivo.</p>\",\"PeriodicalId\":19523,\"journal\":{\"name\":\"Oligonucleotides\",\"volume\":\"20 4\",\"pages\":\"175-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/oli.2010.0230\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oligonucleotides\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/oli.2010.0230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oligonucleotides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/oli.2010.0230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cyclodextrin-containing polymer delivery system for light-directed siRNA gene silencing.
In this study, we have investigated the possibility of combining a cyclodextrin-containing polymer (CDP) with siRNA molecules to modulate gene expression in a light-directed manner through photochemical internalization (PCI) technology. We utilized S100A4 as a model gene to evaluate the efficacy of gene silencing. After optimization of carrier/cargo ratio and illumination dose, real-time reverse transcriptase-polymerase chain reaction data showed between 80% and 90% silencing in the siRNA samples treated with PCI compared with untreated control. In contrast, only a 0%-10% silencing effect was detected in the siRNA samples without PCI treatment, demonstrating the potency of light-specific delivery of siRNA molecules. Light-directed siRNA delivery was shown in 2 different cell lines with corresponding potency. Further, time-lapse results demonstrated maximum gene silencing only at 5 hours after endosomal release, implying, for example, rapid carrier decondensation when using the CDP. This work represents a first success in using a CDP delivery agent, without endosomolytic properties for siRNA gene silencing in a light-directed manner, opening the opportunity to use CDPs for light-directed siRNA gene silencing in vivo.