Andreas Mueller, Gian Candrian, Juri D Kropotov, Valery A Ponomarev, Gian-Marco Baschera
{"title":"利用机器学习系统,根据ERP独立成分对ADHD患者进行分类。","authors":"Andreas Mueller, Gian Candrian, Juri D Kropotov, Valery A Ponomarev, Gian-Marco Baschera","doi":"10.1186/1753-4631-4-S1-S1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In the context of sensory and cognitive-processing deficits in ADHD patients, there is considerable evidence of altered event related potentials (ERP). Most of the studies, however, were done on ADHD children. Using the independent component analysis (ICA) method, ERPs can be decomposed into functionally different components. Using the classification method of support vector machine, this study investigated whether features of independent ERP components can be used for discrimination of ADHD adults from healthy subjects.</p><p><strong>Methods: </strong>Two groups of age- and sex-matched adults (74 ADHD, 74 controls) performed a visual two stimulus GO/NOGO task. ERP responses were decomposed into independent components by means of ICA. A feature selection algorithm defined a set of independent component features which was entered into a support vector machine.</p><p><strong>Results: </strong>The feature set consisted of five latency measures in specific time windows, which were collected from four different independent components. The independent components involved were a novelty component, a sensory related and two executive function related components. Using a 10-fold cross-validation approach, classification accuracy was 92%.</p><p><strong>Conclusions: </strong>This study was a first attempt to classify ADHD adults by means of support vector machine which indicates that classification by means of non-linear methods is feasible in the context of clinical groups. Further, independent ERP components have been shown to provide features that can be used for characterizing clinical populations.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"4 Suppl 1 ","pages":"S1"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880795/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classification of ADHD patients on the basis of independent ERP components using a machine learning system.\",\"authors\":\"Andreas Mueller, Gian Candrian, Juri D Kropotov, Valery A Ponomarev, Gian-Marco Baschera\",\"doi\":\"10.1186/1753-4631-4-S1-S1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In the context of sensory and cognitive-processing deficits in ADHD patients, there is considerable evidence of altered event related potentials (ERP). Most of the studies, however, were done on ADHD children. Using the independent component analysis (ICA) method, ERPs can be decomposed into functionally different components. Using the classification method of support vector machine, this study investigated whether features of independent ERP components can be used for discrimination of ADHD adults from healthy subjects.</p><p><strong>Methods: </strong>Two groups of age- and sex-matched adults (74 ADHD, 74 controls) performed a visual two stimulus GO/NOGO task. ERP responses were decomposed into independent components by means of ICA. A feature selection algorithm defined a set of independent component features which was entered into a support vector machine.</p><p><strong>Results: </strong>The feature set consisted of five latency measures in specific time windows, which were collected from four different independent components. The independent components involved were a novelty component, a sensory related and two executive function related components. Using a 10-fold cross-validation approach, classification accuracy was 92%.</p><p><strong>Conclusions: </strong>This study was a first attempt to classify ADHD adults by means of support vector machine which indicates that classification by means of non-linear methods is feasible in the context of clinical groups. Further, independent ERP components have been shown to provide features that can be used for characterizing clinical populations.</p>\",\"PeriodicalId\":87480,\"journal\":{\"name\":\"Nonlinear biomedical physics\",\"volume\":\"4 Suppl 1 \",\"pages\":\"S1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear biomedical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1753-4631-4-S1-S1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear biomedical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1753-4631-4-S1-S1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of ADHD patients on the basis of independent ERP components using a machine learning system.
Background: In the context of sensory and cognitive-processing deficits in ADHD patients, there is considerable evidence of altered event related potentials (ERP). Most of the studies, however, were done on ADHD children. Using the independent component analysis (ICA) method, ERPs can be decomposed into functionally different components. Using the classification method of support vector machine, this study investigated whether features of independent ERP components can be used for discrimination of ADHD adults from healthy subjects.
Methods: Two groups of age- and sex-matched adults (74 ADHD, 74 controls) performed a visual two stimulus GO/NOGO task. ERP responses were decomposed into independent components by means of ICA. A feature selection algorithm defined a set of independent component features which was entered into a support vector machine.
Results: The feature set consisted of five latency measures in specific time windows, which were collected from four different independent components. The independent components involved were a novelty component, a sensory related and two executive function related components. Using a 10-fold cross-validation approach, classification accuracy was 92%.
Conclusions: This study was a first attempt to classify ADHD adults by means of support vector machine which indicates that classification by means of non-linear methods is feasible in the context of clinical groups. Further, independent ERP components have been shown to provide features that can be used for characterizing clinical populations.