{"title":"壳聚糖羟基苯并三唑核酸递送。","authors":"Praneet Opanasopit, Sunee Techaarpornkul, Theerasak Rojanarata, Tanasait Ngawhirunpat, Uracha Ruktanonchai","doi":"10.1089/oli.2009.0227","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to investigate the transfection efficiency of chitosan hydroxybenzotriazole (CS-HOBT) for in vitro nucleic acid delivery. The results revealed that CS-HOBT was able to condense with DNA/small interfering double-stranded RNA molecules (siRNA). Illustrated by agarose gel electrophoresis, complete complexes of CS-HOBT/DNA were formed at a weight ratio of above 3, whereas those of CS-HOBT/siRNA were formed at a weight ratio of above 4 (CS molecular weights [MWs] 20 and 45 kDa) and above 2 (CS MWs 200 and 460 kDa). Gel electrophoresis results indicated that binding of CS-HOBT and DNA or siRNA depended on the MW and weight ratio. The particle sizes of CS-HOBT/nucleic acid complexes were in nanosize range. The highest transfection efficiency of CS-HOBT/DNA complex was found at a weight ratio of 2, with the lowest CS MW of 20 kDa. The CS-HOBT-mediated siRNA silencing of the enhanced green fluorescent protein gene occurred maximally with 60% efficiency. The CS-HOBT/siRNA complex with the lowest CS MW of 20 kDa at a weight ratio of 80 showed the strongest inhibition of gene expression. For cytotoxicity studies, over 80% the average cell viabilities of the complexes were observed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. This study suggests that CS-HOBT is straightforward to prepare, is safe, and exhibits significantly improved nucleic acid delivery potential in vitro.</p>","PeriodicalId":19523,"journal":{"name":"Oligonucleotides","volume":"20 3","pages":"127-36"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/oli.2009.0227","citationCount":"14","resultStr":"{\"title\":\"Nucleic acid delivery with chitosan hydroxybenzotriazole.\",\"authors\":\"Praneet Opanasopit, Sunee Techaarpornkul, Theerasak Rojanarata, Tanasait Ngawhirunpat, Uracha Ruktanonchai\",\"doi\":\"10.1089/oli.2009.0227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study was to investigate the transfection efficiency of chitosan hydroxybenzotriazole (CS-HOBT) for in vitro nucleic acid delivery. The results revealed that CS-HOBT was able to condense with DNA/small interfering double-stranded RNA molecules (siRNA). Illustrated by agarose gel electrophoresis, complete complexes of CS-HOBT/DNA were formed at a weight ratio of above 3, whereas those of CS-HOBT/siRNA were formed at a weight ratio of above 4 (CS molecular weights [MWs] 20 and 45 kDa) and above 2 (CS MWs 200 and 460 kDa). Gel electrophoresis results indicated that binding of CS-HOBT and DNA or siRNA depended on the MW and weight ratio. The particle sizes of CS-HOBT/nucleic acid complexes were in nanosize range. The highest transfection efficiency of CS-HOBT/DNA complex was found at a weight ratio of 2, with the lowest CS MW of 20 kDa. The CS-HOBT-mediated siRNA silencing of the enhanced green fluorescent protein gene occurred maximally with 60% efficiency. The CS-HOBT/siRNA complex with the lowest CS MW of 20 kDa at a weight ratio of 80 showed the strongest inhibition of gene expression. For cytotoxicity studies, over 80% the average cell viabilities of the complexes were observed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. This study suggests that CS-HOBT is straightforward to prepare, is safe, and exhibits significantly improved nucleic acid delivery potential in vitro.</p>\",\"PeriodicalId\":19523,\"journal\":{\"name\":\"Oligonucleotides\",\"volume\":\"20 3\",\"pages\":\"127-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/oli.2009.0227\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oligonucleotides\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/oli.2009.0227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oligonucleotides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/oli.2009.0227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nucleic acid delivery with chitosan hydroxybenzotriazole.
The objective of this study was to investigate the transfection efficiency of chitosan hydroxybenzotriazole (CS-HOBT) for in vitro nucleic acid delivery. The results revealed that CS-HOBT was able to condense with DNA/small interfering double-stranded RNA molecules (siRNA). Illustrated by agarose gel electrophoresis, complete complexes of CS-HOBT/DNA were formed at a weight ratio of above 3, whereas those of CS-HOBT/siRNA were formed at a weight ratio of above 4 (CS molecular weights [MWs] 20 and 45 kDa) and above 2 (CS MWs 200 and 460 kDa). Gel electrophoresis results indicated that binding of CS-HOBT and DNA or siRNA depended on the MW and weight ratio. The particle sizes of CS-HOBT/nucleic acid complexes were in nanosize range. The highest transfection efficiency of CS-HOBT/DNA complex was found at a weight ratio of 2, with the lowest CS MW of 20 kDa. The CS-HOBT-mediated siRNA silencing of the enhanced green fluorescent protein gene occurred maximally with 60% efficiency. The CS-HOBT/siRNA complex with the lowest CS MW of 20 kDa at a weight ratio of 80 showed the strongest inhibition of gene expression. For cytotoxicity studies, over 80% the average cell viabilities of the complexes were observed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. This study suggests that CS-HOBT is straightforward to prepare, is safe, and exhibits significantly improved nucleic acid delivery potential in vitro.