Babar Ali , Hossein Cheraghi Bidsorkhi , Alessandro G. D'Aloia , Marco Laracca , Maria S. Sarto
{"title":"用于增强和长期生物信号检测的可穿戴石墨烯织物电极","authors":"Babar Ali , Hossein Cheraghi Bidsorkhi , Alessandro G. D'Aloia , Marco Laracca , Maria S. Sarto","doi":"10.1016/j.snr.2023.100161","DOIUrl":null,"url":null,"abstract":"<div><p>Wearable health sensing devices are crucial and the development of multi-sensing textiles for non-invasive and continuous long-term biosignal monitoring is of primary interest. Nowadays, different wearable sensors are available but they usually lack comfort for continuous use during normal daily life activities. In this study, new graphene-based flexible dry electrodes are investigated to overcome the limitations of the currently available electrodes. Briefly, they are realized through casting PVDF (polyvinylidene fluoride)/GNP (graphene nanoplatelets) nanocomposite over commercial textiles. These electrodes are soft and flexible and adhere more easily to the skin. In terms of performance, the PVDF/GNP electrodes show lower impedance per unit area compared to commercial ones, hence they can be employed for biosignal detection. In particular, the developed electrodes are used for electrocardiogram (ECG) signal monitoring. The recorded ECG signal-to-noise ratio (SNR) reached up to 40 dB and all necessary ECG signal features and intervals are clearly distinguishable. Furthermore, the essential ECG signal intervals on each cadiac cycle show very small variations in time. Finally, the superhydrophobic property allows the electrodes to be used repeatedly after washing. As a final note, the developed dry PVDF/GNP electrodes provide reusability, biocompatibility, good skin-electrode contact, and no signs of skin irritation.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"5 ","pages":"Article 100161"},"PeriodicalIF":6.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wearable graphene-based fabric electrodes for enhanced and long-term biosignal detection\",\"authors\":\"Babar Ali , Hossein Cheraghi Bidsorkhi , Alessandro G. D'Aloia , Marco Laracca , Maria S. Sarto\",\"doi\":\"10.1016/j.snr.2023.100161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wearable health sensing devices are crucial and the development of multi-sensing textiles for non-invasive and continuous long-term biosignal monitoring is of primary interest. Nowadays, different wearable sensors are available but they usually lack comfort for continuous use during normal daily life activities. In this study, new graphene-based flexible dry electrodes are investigated to overcome the limitations of the currently available electrodes. Briefly, they are realized through casting PVDF (polyvinylidene fluoride)/GNP (graphene nanoplatelets) nanocomposite over commercial textiles. These electrodes are soft and flexible and adhere more easily to the skin. In terms of performance, the PVDF/GNP electrodes show lower impedance per unit area compared to commercial ones, hence they can be employed for biosignal detection. In particular, the developed electrodes are used for electrocardiogram (ECG) signal monitoring. The recorded ECG signal-to-noise ratio (SNR) reached up to 40 dB and all necessary ECG signal features and intervals are clearly distinguishable. Furthermore, the essential ECG signal intervals on each cadiac cycle show very small variations in time. Finally, the superhydrophobic property allows the electrodes to be used repeatedly after washing. As a final note, the developed dry PVDF/GNP electrodes provide reusability, biocompatibility, good skin-electrode contact, and no signs of skin irritation.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"5 \",\"pages\":\"Article 100161\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053923000243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053923000243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Wearable graphene-based fabric electrodes for enhanced and long-term biosignal detection
Wearable health sensing devices are crucial and the development of multi-sensing textiles for non-invasive and continuous long-term biosignal monitoring is of primary interest. Nowadays, different wearable sensors are available but they usually lack comfort for continuous use during normal daily life activities. In this study, new graphene-based flexible dry electrodes are investigated to overcome the limitations of the currently available electrodes. Briefly, they are realized through casting PVDF (polyvinylidene fluoride)/GNP (graphene nanoplatelets) nanocomposite over commercial textiles. These electrodes are soft and flexible and adhere more easily to the skin. In terms of performance, the PVDF/GNP electrodes show lower impedance per unit area compared to commercial ones, hence they can be employed for biosignal detection. In particular, the developed electrodes are used for electrocardiogram (ECG) signal monitoring. The recorded ECG signal-to-noise ratio (SNR) reached up to 40 dB and all necessary ECG signal features and intervals are clearly distinguishable. Furthermore, the essential ECG signal intervals on each cadiac cycle show very small variations in time. Finally, the superhydrophobic property allows the electrodes to be used repeatedly after washing. As a final note, the developed dry PVDF/GNP electrodes provide reusability, biocompatibility, good skin-electrode contact, and no signs of skin irritation.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.