Peng Zhang, Scott Becka, Sonya E L Craig, David T Lodowski, Susann M Brady-Kalnay, Zhenghe Wang
{"title":"PTPRT/PTPrho的纤维连接蛋白III重复序列中的癌症衍生突变抑制细胞-细胞聚集。","authors":"Peng Zhang, Scott Becka, Sonya E L Craig, David T Lodowski, Susann M Brady-Kalnay, Zhenghe Wang","doi":"10.3109/15419061003653771","DOIUrl":null,"url":null,"abstract":"<p><p>Abstract The receptor protein tyrosine phosphatase T PTPrho is the most frequently mutated tyrosine phosphatase in human cancer. PTPrho mediates homophilic cell-cell aggregation. In its extracellular region, PTPrho has cell adhesion molecule-like motifs, including a MAM domain, an immunoglobulin domain, and four fibronectin type III (FNIII) repeats. Tumor-derived mutations have been identified in all of these extracellular domains. Previously, the authors determined that tumor-derived mutations in the MAM and immunoglobulin domains of PTPrho reduce homophilic cell-cell aggregation. In this paper, the authors describe experiments in which the contribution of the FNIII repeats to PTPrho-mediated cell-cell adhesion was evaluated. The results demonstrate that deletion of the FNIII repeats of PTPrho result in defective cell-cell aggregation. Furthermore, all of the tumor-derived mutations in the FNIII repeats of PTPrho also disrupt cell-cell aggregation. These results further support the hypothesis that mutational inactivation of PTPrho may lead to cancer progression by disrupting cell-cell adhesion.</p>","PeriodicalId":55269,"journal":{"name":"Cell Communication and Adhesion","volume":"16 5-6","pages":"146-53"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419061003653771","citationCount":"25","resultStr":"{\"title\":\"Cancer-derived mutations in the fibronectin III repeats of PTPRT/PTPrho inhibit cell-cell aggregation.\",\"authors\":\"Peng Zhang, Scott Becka, Sonya E L Craig, David T Lodowski, Susann M Brady-Kalnay, Zhenghe Wang\",\"doi\":\"10.3109/15419061003653771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abstract The receptor protein tyrosine phosphatase T PTPrho is the most frequently mutated tyrosine phosphatase in human cancer. PTPrho mediates homophilic cell-cell aggregation. In its extracellular region, PTPrho has cell adhesion molecule-like motifs, including a MAM domain, an immunoglobulin domain, and four fibronectin type III (FNIII) repeats. Tumor-derived mutations have been identified in all of these extracellular domains. Previously, the authors determined that tumor-derived mutations in the MAM and immunoglobulin domains of PTPrho reduce homophilic cell-cell aggregation. In this paper, the authors describe experiments in which the contribution of the FNIII repeats to PTPrho-mediated cell-cell adhesion was evaluated. The results demonstrate that deletion of the FNIII repeats of PTPrho result in defective cell-cell aggregation. Furthermore, all of the tumor-derived mutations in the FNIII repeats of PTPrho also disrupt cell-cell aggregation. These results further support the hypothesis that mutational inactivation of PTPrho may lead to cancer progression by disrupting cell-cell adhesion.</p>\",\"PeriodicalId\":55269,\"journal\":{\"name\":\"Cell Communication and Adhesion\",\"volume\":\"16 5-6\",\"pages\":\"146-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/15419061003653771\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Adhesion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/15419061003653771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419061003653771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Cancer-derived mutations in the fibronectin III repeats of PTPRT/PTPrho inhibit cell-cell aggregation.
Abstract The receptor protein tyrosine phosphatase T PTPrho is the most frequently mutated tyrosine phosphatase in human cancer. PTPrho mediates homophilic cell-cell aggregation. In its extracellular region, PTPrho has cell adhesion molecule-like motifs, including a MAM domain, an immunoglobulin domain, and four fibronectin type III (FNIII) repeats. Tumor-derived mutations have been identified in all of these extracellular domains. Previously, the authors determined that tumor-derived mutations in the MAM and immunoglobulin domains of PTPrho reduce homophilic cell-cell aggregation. In this paper, the authors describe experiments in which the contribution of the FNIII repeats to PTPrho-mediated cell-cell adhesion was evaluated. The results demonstrate that deletion of the FNIII repeats of PTPrho result in defective cell-cell aggregation. Furthermore, all of the tumor-derived mutations in the FNIII repeats of PTPrho also disrupt cell-cell aggregation. These results further support the hypothesis that mutational inactivation of PTPrho may lead to cancer progression by disrupting cell-cell adhesion.
期刊介绍:
Cessation
Cell Communication and Adhesion is an international Open Access journal which provides a central forum for research on mechanisms underlying cellular signalling and adhesion. The journal provides a single source of information concerning all forms of cellular communication, cell junctions, adhesion molecules and families of receptors from diverse biological systems.
The journal welcomes submission of original research articles, reviews, short communications and conference reports.