{"title":"抗氧化酶和谷胱甘肽在3,3',4,4',5-五氯联苯(PCB 126)亚慢性暴露后大鼠脑组织氧化应激中的作用","authors":"Ezdihar A Hassoun, Seanna Periandri-Steinberg","doi":"10.1080/02772240902846660","DOIUrl":null,"url":null,"abstract":"<p><p>The abilities of various doses of 3,3',4,4',5-pentachlorobiphenyl (PCB126) to induce changes in antioxidant enzyme activities and glutathione levels in the brain tissues of rats were examined in rats after subchronic exposure. Groups of rats were administered 10,30, 100, 300, 550 or 1000 ng PCB 126/kg/day, p.o., for 13 weeks and the activities of supeoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), as well as (GSH) levels were determined in the brain tissue homogenates. Treatment resulted in significant and dose-dependent increases in the activities of the three tested enzymes. While maximal increase GSH-Px activity was achieved with a dose of 100-175 mg/kg/day, CAT and SOD activities continued to increase in response to maximal dose used for this study. GSH levels on the other hand, were suppressed significantly in a dose-dependent fashion. Data suggest that previously observed increase in oxidative stress production by PCB-126 in the brain tissues of rats is associated with dose-dependent rise in antioxidant enzyme activities and GSH depletion. However, the increases in the antioxidant enzyme activities can not provide full protection against oxidative damage induced by the same doses. In addition, GSH depletion plays a critical role in the previously observed oxidative stress in response to this compound.</p>","PeriodicalId":23122,"journal":{"name":"Toxicological and Environmental Chemistry","volume":"92 2","pages":"301"},"PeriodicalIF":1.1000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/02772240902846660","citationCount":"15","resultStr":"{\"title\":\"Assessment of the roles of antioxidant enzymes and glutathione in 3,3',4,4',5-Pentachlorobiphenyl (PCB 126)-induced oxidative stress in the brain tissues of rats after subchronic exposure.\",\"authors\":\"Ezdihar A Hassoun, Seanna Periandri-Steinberg\",\"doi\":\"10.1080/02772240902846660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The abilities of various doses of 3,3',4,4',5-pentachlorobiphenyl (PCB126) to induce changes in antioxidant enzyme activities and glutathione levels in the brain tissues of rats were examined in rats after subchronic exposure. Groups of rats were administered 10,30, 100, 300, 550 or 1000 ng PCB 126/kg/day, p.o., for 13 weeks and the activities of supeoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), as well as (GSH) levels were determined in the brain tissue homogenates. Treatment resulted in significant and dose-dependent increases in the activities of the three tested enzymes. While maximal increase GSH-Px activity was achieved with a dose of 100-175 mg/kg/day, CAT and SOD activities continued to increase in response to maximal dose used for this study. GSH levels on the other hand, were suppressed significantly in a dose-dependent fashion. Data suggest that previously observed increase in oxidative stress production by PCB-126 in the brain tissues of rats is associated with dose-dependent rise in antioxidant enzyme activities and GSH depletion. However, the increases in the antioxidant enzyme activities can not provide full protection against oxidative damage induced by the same doses. In addition, GSH depletion plays a critical role in the previously observed oxidative stress in response to this compound.</p>\",\"PeriodicalId\":23122,\"journal\":{\"name\":\"Toxicological and Environmental Chemistry\",\"volume\":\"92 2\",\"pages\":\"301\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2010-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/02772240902846660\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological and Environmental Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/02772240902846660\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological and Environmental Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02772240902846660","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessment of the roles of antioxidant enzymes and glutathione in 3,3',4,4',5-Pentachlorobiphenyl (PCB 126)-induced oxidative stress in the brain tissues of rats after subchronic exposure.
The abilities of various doses of 3,3',4,4',5-pentachlorobiphenyl (PCB126) to induce changes in antioxidant enzyme activities and glutathione levels in the brain tissues of rats were examined in rats after subchronic exposure. Groups of rats were administered 10,30, 100, 300, 550 or 1000 ng PCB 126/kg/day, p.o., for 13 weeks and the activities of supeoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), as well as (GSH) levels were determined in the brain tissue homogenates. Treatment resulted in significant and dose-dependent increases in the activities of the three tested enzymes. While maximal increase GSH-Px activity was achieved with a dose of 100-175 mg/kg/day, CAT and SOD activities continued to increase in response to maximal dose used for this study. GSH levels on the other hand, were suppressed significantly in a dose-dependent fashion. Data suggest that previously observed increase in oxidative stress production by PCB-126 in the brain tissues of rats is associated with dose-dependent rise in antioxidant enzyme activities and GSH depletion. However, the increases in the antioxidant enzyme activities can not provide full protection against oxidative damage induced by the same doses. In addition, GSH depletion plays a critical role in the previously observed oxidative stress in response to this compound.
期刊介绍:
The journal is interdisciplinary in outlook, and manuscripts published in it cover all relevant areas: • inorganic chemistry – trace elements in food and the environment, metal complexes and chelates; • organic chemistry – environmental fate, chemical reactions, metabolites and secondary products, synthesis of standards and labelled materials; • physical chemistry – photochemistry, radiochemistry; • environmental chemistry – sources, fate, and sinks of xenochemicals, environmental partitioning and transport, degradation and deposition; • analytical chemistry – development and optimisation of analytical methods, instrumental and methodological advances, miniaturisation and automation; • biological chemistry – pharmacology and toxicology, uptake, metabolism, disposition of xenochemicals, structure-activity relationships, modes of action, ecotoxicological testing.