Kin Chiu, Hiu-Chi Chan, Sze-Chun Yeung, Wai-Hung Yuen, Sze-Yong Zee, Raymond Chuen-Chung Chang, Kwok-Fai So
{"title":"更正:枸杞调节小胶质细胞对高眼压模型大鼠视网膜神经节细胞存活的影响。","authors":"Kin Chiu, Hiu-Chi Chan, Sze-Chun Yeung, Wai-Hung Yuen, Sze-Yong Zee, Raymond Chuen-Chung Chang, Kwok-Fai So","doi":"10.1007/s12177-009-9035-5","DOIUrl":null,"url":null,"abstract":"<p><p>The active component of Wolfberry (Lycium barbarum), lycium barbarum polysaccharides (LBP), has been shown to be neuroprotective to retinal ganglion cells (RGCs) against ocular hypertension (OH). Aiming to study whether this neuroprotection is mediated via modulating immune cells in the retina, we used multiphoton confocal microscopy to investigate morphological changes of microglia in whole-mounted retinas. Retinas under OH displayed slightly activated microglia. One to 100 mg/kg LBP exerted the best neuroprotection and elicited moderately activated microglia in the inner retina with ramified appearance but thicker and focally enlarged processes. Intravitreous injection of bacterial endotoxin lipopolysaccharide (LPS) decreased the survival of RGCs at 4 weeks, and the activated microglia exhibited amoeboid appearance as fully activated phenotype. When activation of microglia was attenuated by intravitreous injection of macrophage/microglia inhibitory factor, protective effect of 10 mg/kg LBP was attenuated. The results implicated that neuroprotective effects of LBP were partly due to modulating the activation of microglia.[This corrects the article on p. in vol. .].</p>","PeriodicalId":73873,"journal":{"name":"Journal of ocular biology, diseases, and informatics","volume":"2 3","pages":"127-136"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12177-009-9035-5","citationCount":"16","resultStr":"{\"title\":\"Erratum: Modulation of microglia by Wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model.\",\"authors\":\"Kin Chiu, Hiu-Chi Chan, Sze-Chun Yeung, Wai-Hung Yuen, Sze-Yong Zee, Raymond Chuen-Chung Chang, Kwok-Fai So\",\"doi\":\"10.1007/s12177-009-9035-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The active component of Wolfberry (Lycium barbarum), lycium barbarum polysaccharides (LBP), has been shown to be neuroprotective to retinal ganglion cells (RGCs) against ocular hypertension (OH). Aiming to study whether this neuroprotection is mediated via modulating immune cells in the retina, we used multiphoton confocal microscopy to investigate morphological changes of microglia in whole-mounted retinas. Retinas under OH displayed slightly activated microglia. One to 100 mg/kg LBP exerted the best neuroprotection and elicited moderately activated microglia in the inner retina with ramified appearance but thicker and focally enlarged processes. Intravitreous injection of bacterial endotoxin lipopolysaccharide (LPS) decreased the survival of RGCs at 4 weeks, and the activated microglia exhibited amoeboid appearance as fully activated phenotype. When activation of microglia was attenuated by intravitreous injection of macrophage/microglia inhibitory factor, protective effect of 10 mg/kg LBP was attenuated. The results implicated that neuroprotective effects of LBP were partly due to modulating the activation of microglia.[This corrects the article on p. in vol. .].</p>\",\"PeriodicalId\":73873,\"journal\":{\"name\":\"Journal of ocular biology, diseases, and informatics\",\"volume\":\"2 3\",\"pages\":\"127-136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12177-009-9035-5\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ocular biology, diseases, and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12177-009-9035-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/9/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ocular biology, diseases, and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12177-009-9035-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/9/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Erratum: Modulation of microglia by Wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model.
The active component of Wolfberry (Lycium barbarum), lycium barbarum polysaccharides (LBP), has been shown to be neuroprotective to retinal ganglion cells (RGCs) against ocular hypertension (OH). Aiming to study whether this neuroprotection is mediated via modulating immune cells in the retina, we used multiphoton confocal microscopy to investigate morphological changes of microglia in whole-mounted retinas. Retinas under OH displayed slightly activated microglia. One to 100 mg/kg LBP exerted the best neuroprotection and elicited moderately activated microglia in the inner retina with ramified appearance but thicker and focally enlarged processes. Intravitreous injection of bacterial endotoxin lipopolysaccharide (LPS) decreased the survival of RGCs at 4 weeks, and the activated microglia exhibited amoeboid appearance as fully activated phenotype. When activation of microglia was attenuated by intravitreous injection of macrophage/microglia inhibitory factor, protective effect of 10 mg/kg LBP was attenuated. The results implicated that neuroprotective effects of LBP were partly due to modulating the activation of microglia.[This corrects the article on p. in vol. .].