Md Rowshon Alam, Xin Ming, Vidula Dixit, Michael Fisher, Xiaoyuan Chen, Rudolph L Juliano
{"title":"反义寡核苷酸的生物学作用取决于其内吞和转运途径。","authors":"Md Rowshon Alam, Xin Ming, Vidula Dixit, Michael Fisher, Xiaoyuan Chen, Rudolph L Juliano","doi":"10.1089/oli.2009.0211","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate that the biological effect of an oligonucleotide is influenced by its route of cellular uptake. Utilizing a splice-switching antisense oligonucleotide (SSO) and a sensitive reporter assay involving correction of RNA splicing, we examined induction of luciferase in cells treated either with various concentrations of an unconjugated (\"free\") SSO or an SSO conjugated to a bivalent RGD ligand that promotes binding to the alphavbeta3 integrin (RGD-SSO). Under conditions of equal accumulation in cells, the RGD-SSO consistently had a greater effect on luciferase induction than the unconjugated SSO. We determined that the RGD-SSO and the unconjugated SSO were internalized by distinct endocytotic pathways, suggesting that the route of internalization affects the magnitude of the biological response.</p>","PeriodicalId":19523,"journal":{"name":"Oligonucleotides","volume":"20 2","pages":"103-9"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/oli.2009.0211","citationCount":"56","resultStr":"{\"title\":\"The biological effect of an antisense oligonucleotide depends on its route of endocytosis and trafficking.\",\"authors\":\"Md Rowshon Alam, Xin Ming, Vidula Dixit, Michael Fisher, Xiaoyuan Chen, Rudolph L Juliano\",\"doi\":\"10.1089/oli.2009.0211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We demonstrate that the biological effect of an oligonucleotide is influenced by its route of cellular uptake. Utilizing a splice-switching antisense oligonucleotide (SSO) and a sensitive reporter assay involving correction of RNA splicing, we examined induction of luciferase in cells treated either with various concentrations of an unconjugated (\\\"free\\\") SSO or an SSO conjugated to a bivalent RGD ligand that promotes binding to the alphavbeta3 integrin (RGD-SSO). Under conditions of equal accumulation in cells, the RGD-SSO consistently had a greater effect on luciferase induction than the unconjugated SSO. We determined that the RGD-SSO and the unconjugated SSO were internalized by distinct endocytotic pathways, suggesting that the route of internalization affects the magnitude of the biological response.</p>\",\"PeriodicalId\":19523,\"journal\":{\"name\":\"Oligonucleotides\",\"volume\":\"20 2\",\"pages\":\"103-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/oli.2009.0211\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oligonucleotides\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/oli.2009.0211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oligonucleotides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/oli.2009.0211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The biological effect of an antisense oligonucleotide depends on its route of endocytosis and trafficking.
We demonstrate that the biological effect of an oligonucleotide is influenced by its route of cellular uptake. Utilizing a splice-switching antisense oligonucleotide (SSO) and a sensitive reporter assay involving correction of RNA splicing, we examined induction of luciferase in cells treated either with various concentrations of an unconjugated ("free") SSO or an SSO conjugated to a bivalent RGD ligand that promotes binding to the alphavbeta3 integrin (RGD-SSO). Under conditions of equal accumulation in cells, the RGD-SSO consistently had a greater effect on luciferase induction than the unconjugated SSO. We determined that the RGD-SSO and the unconjugated SSO were internalized by distinct endocytotic pathways, suggesting that the route of internalization affects the magnitude of the biological response.