{"title":"人类多巴胺能奖励的遗传变异。","authors":"Eric Stice, Alain Dagher","doi":"10.1159/000264405","DOIUrl":null,"url":null,"abstract":"<p><p>Dopamine-based reward circuitry appears to play a role in encoding reward from eating and incentive sensitization, whereby cues associated with food reward acquire motivational value. Data suggest that low levels of dopamine D2 receptors and attenuated responsivity of dopamine-target regions (e.g. the striatum) to food and food cues are associated with elevated weight. There is mixed evidence that genotypes that appear to be associated with reduced signaling of dopamine circuitry, including DRD2, DRD4 and DAT, are correlated with obesity. In addition, there is emerging fMRI evidence that reduced responsivity in brain regions implicated in food reward increase risk for future weight gain among individuals who appear to be at genetic risk for attenuated dopamine signaling by virtue of DRD2 and DRD4 genotypes. However, it is vital for these relations to be replicated in larger, independent prospective studies and to use positron emission tomography to better characterize parameters of dopamine signaling, including dopamine receptor density, basal dopamine levels, and phasic dopamine release. Improved understanding of the role of dopamine-based reward circuitry and genotypes that influence the functioning of this circuitry may inform the design of more effective preventive and treatment interventions for obesity.</p>","PeriodicalId":55148,"journal":{"name":"Forum of Nutrition","volume":"63 ","pages":"176-185"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000264405","citationCount":"31","resultStr":"{\"title\":\"Genetic variation in dopaminergic reward in humans.\",\"authors\":\"Eric Stice, Alain Dagher\",\"doi\":\"10.1159/000264405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dopamine-based reward circuitry appears to play a role in encoding reward from eating and incentive sensitization, whereby cues associated with food reward acquire motivational value. Data suggest that low levels of dopamine D2 receptors and attenuated responsivity of dopamine-target regions (e.g. the striatum) to food and food cues are associated with elevated weight. There is mixed evidence that genotypes that appear to be associated with reduced signaling of dopamine circuitry, including DRD2, DRD4 and DAT, are correlated with obesity. In addition, there is emerging fMRI evidence that reduced responsivity in brain regions implicated in food reward increase risk for future weight gain among individuals who appear to be at genetic risk for attenuated dopamine signaling by virtue of DRD2 and DRD4 genotypes. However, it is vital for these relations to be replicated in larger, independent prospective studies and to use positron emission tomography to better characterize parameters of dopamine signaling, including dopamine receptor density, basal dopamine levels, and phasic dopamine release. Improved understanding of the role of dopamine-based reward circuitry and genotypes that influence the functioning of this circuitry may inform the design of more effective preventive and treatment interventions for obesity.</p>\",\"PeriodicalId\":55148,\"journal\":{\"name\":\"Forum of Nutrition\",\"volume\":\"63 \",\"pages\":\"176-185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000264405\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Nutrition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000264405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000264405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/11/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic variation in dopaminergic reward in humans.
Dopamine-based reward circuitry appears to play a role in encoding reward from eating and incentive sensitization, whereby cues associated with food reward acquire motivational value. Data suggest that low levels of dopamine D2 receptors and attenuated responsivity of dopamine-target regions (e.g. the striatum) to food and food cues are associated with elevated weight. There is mixed evidence that genotypes that appear to be associated with reduced signaling of dopamine circuitry, including DRD2, DRD4 and DAT, are correlated with obesity. In addition, there is emerging fMRI evidence that reduced responsivity in brain regions implicated in food reward increase risk for future weight gain among individuals who appear to be at genetic risk for attenuated dopamine signaling by virtue of DRD2 and DRD4 genotypes. However, it is vital for these relations to be replicated in larger, independent prospective studies and to use positron emission tomography to better characterize parameters of dopamine signaling, including dopamine receptor density, basal dopamine levels, and phasic dopamine release. Improved understanding of the role of dopamine-based reward circuitry and genotypes that influence the functioning of this circuitry may inform the design of more effective preventive and treatment interventions for obesity.