Brian A. Lanman*, Jennifer R. Allen, John G. Allen, Albert K. Amegadzie, Kate S. Ashton, Shon K. Booker, Jian Jeffrey Chen, Ning Chen, Michael J. Frohn, Guy Goodman, David J. Kopecky, Longbin Liu, Patricia Lopez, Jonathan D. Low, Vu Ma, Ana E. Minatti, Thomas T. Nguyen, Nobuko Nishimura, Alexander J. Pickrell, Anthony B. Reed, Youngsook Shin, Aaron C. Siegmund, Nuria A. Tamayo, Christopher M. Tegley, Mary C. Walton, Hui-Ling Wang, Ryan P. Wurz, May Xue, Kevin C. Yang, Pragathi Achanta, Michael D. Bartberger, Jude Canon, L. Steven Hollis, John D. McCarter, Christopher Mohr, Karen Rex, Anne Y. Saiki, Tisha San Miguel, Laurie P. Volak, Kevin H. Wang, Douglas A. Whittington, Stephan G. Zech, J. Russell Lipford, Victor J. Cee
{"title":"KRASG12C共价抑制剂AMG 510治疗实体瘤的发现","authors":"Brian A. Lanman*, Jennifer R. Allen, John G. Allen, Albert K. Amegadzie, Kate S. Ashton, Shon K. Booker, Jian Jeffrey Chen, Ning Chen, Michael J. Frohn, Guy Goodman, David J. Kopecky, Longbin Liu, Patricia Lopez, Jonathan D. Low, Vu Ma, Ana E. Minatti, Thomas T. Nguyen, Nobuko Nishimura, Alexander J. Pickrell, Anthony B. Reed, Youngsook Shin, Aaron C. Siegmund, Nuria A. Tamayo, Christopher M. Tegley, Mary C. Walton, Hui-Ling Wang, Ryan P. Wurz, May Xue, Kevin C. Yang, Pragathi Achanta, Michael D. Bartberger, Jude Canon, L. Steven Hollis, John D. McCarter, Christopher Mohr, Karen Rex, Anne Y. Saiki, Tisha San Miguel, Laurie P. Volak, Kevin H. Wang, Douglas A. Whittington, Stephan G. Zech, J. Russell Lipford, Victor J. Cee","doi":"10.1021/acs.jmedchem.9b01180","DOIUrl":null,"url":null,"abstract":"<p >KRAS<sup>G12C</sup> has emerged as a promising target in the treatment of solid tumors. Covalent inhibitors targeting the mutant cysteine-12 residue have been shown to disrupt signaling by this long-“undruggable” target; however clinically viable inhibitors have yet to be identified. Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99) we identified in KRAS<sup>G12C</sup> to identify inhibitors suitable for clinical development. Structure-based design efforts leading to the identification of a novel quinazolinone scaffold are described, along with optimization efforts that overcame a configurational stability issue arising from restricted rotation about an axially chiral biaryl bond. Biopharmaceutical optimization of the resulting leads culminated in the identification of AMG 510, a highly potent, selective, and well-tolerated KRAS<sup>G12C</sup> inhibitor currently in phase I clinical trials (NCT03600883).</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"63 1","pages":"52–65"},"PeriodicalIF":6.8000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.jmedchem.9b01180","citationCount":"320","resultStr":"{\"title\":\"Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid Tumors\",\"authors\":\"Brian A. Lanman*, Jennifer R. Allen, John G. Allen, Albert K. Amegadzie, Kate S. Ashton, Shon K. Booker, Jian Jeffrey Chen, Ning Chen, Michael J. Frohn, Guy Goodman, David J. Kopecky, Longbin Liu, Patricia Lopez, Jonathan D. Low, Vu Ma, Ana E. Minatti, Thomas T. Nguyen, Nobuko Nishimura, Alexander J. Pickrell, Anthony B. Reed, Youngsook Shin, Aaron C. Siegmund, Nuria A. Tamayo, Christopher M. Tegley, Mary C. Walton, Hui-Ling Wang, Ryan P. Wurz, May Xue, Kevin C. Yang, Pragathi Achanta, Michael D. Bartberger, Jude Canon, L. Steven Hollis, John D. McCarter, Christopher Mohr, Karen Rex, Anne Y. Saiki, Tisha San Miguel, Laurie P. Volak, Kevin H. Wang, Douglas A. Whittington, Stephan G. Zech, J. Russell Lipford, Victor J. Cee\",\"doi\":\"10.1021/acs.jmedchem.9b01180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >KRAS<sup>G12C</sup> has emerged as a promising target in the treatment of solid tumors. Covalent inhibitors targeting the mutant cysteine-12 residue have been shown to disrupt signaling by this long-“undruggable” target; however clinically viable inhibitors have yet to be identified. Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99) we identified in KRAS<sup>G12C</sup> to identify inhibitors suitable for clinical development. Structure-based design efforts leading to the identification of a novel quinazolinone scaffold are described, along with optimization efforts that overcame a configurational stability issue arising from restricted rotation about an axially chiral biaryl bond. Biopharmaceutical optimization of the resulting leads culminated in the identification of AMG 510, a highly potent, selective, and well-tolerated KRAS<sup>G12C</sup> inhibitor currently in phase I clinical trials (NCT03600883).</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"63 1\",\"pages\":\"52–65\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acs.jmedchem.9b01180\",\"citationCount\":\"320\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b01180\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b01180","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid Tumors
KRASG12C has emerged as a promising target in the treatment of solid tumors. Covalent inhibitors targeting the mutant cysteine-12 residue have been shown to disrupt signaling by this long-“undruggable” target; however clinically viable inhibitors have yet to be identified. Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99) we identified in KRASG12C to identify inhibitors suitable for clinical development. Structure-based design efforts leading to the identification of a novel quinazolinone scaffold are described, along with optimization efforts that overcame a configurational stability issue arising from restricted rotation about an axially chiral biaryl bond. Biopharmaceutical optimization of the resulting leads culminated in the identification of AMG 510, a highly potent, selective, and well-tolerated KRASG12C inhibitor currently in phase I clinical trials (NCT03600883).
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.