高效抗hiv pol锤头核酶的鉴定与表征。

Thea Müller-Kuller, Gianni Capalbo, Christian Klebba, Joachim W Engels, Stefan A Klein
{"title":"高效抗hiv pol锤头核酶的鉴定与表征。","authors":"Thea Müller-Kuller,&nbsp;Gianni Capalbo,&nbsp;Christian Klebba,&nbsp;Joachim W Engels,&nbsp;Stefan A Klein","doi":"10.1089/oli.2008.0150","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to identify and to characterize a highly active anti-HIV ribozyme. Therefore, the genome of HIV-1 IIIb was screened for not yet addressed GUC triplets within highly conserved sequences. Here we report the in vitro characteristics and the antiviral activity of the fittest identified anti-HIV hammerhead ribozyme, targeting the 13th GUC triplet within the HIV-1 pol gene (HHPol13). Multiple turnover kinetics were determined in vitro and revealed very promising kinetic data: V(max) = 39 nM/minute, K(m) = 576 nM, k(cat) = 3.9/minute, and K(cat)/K(m) = 6.8/minute/microM. To analyze its antiviral activity the hammerhead ribozyme was expressed retrovirally in Hut78 cells followed by HIV-1 infection. The newly identified ribozyme conferred a long-term inhibition of HIV-1 replication until the end of the observation period at day 56. We were able to demonstrate that the antiviral activity was mainly due to a ribozyme effect combined with a limited antisense activity. Additionally, the effect of the identified ribozyme was compared with a retrovirally expressed siRNA directed against the same target in the HIV-1 pol gene. This siRNA (siPol13) showed no inhibition of HIV replication. In summary, the hammerhead ribozyme HHPol13 was demonstrated to confer superior cleavage and antiviral activity against HIV-1. These results suggest that even in the RNAi era ribozymes still have the potential as highly active antiviral agents.</p>","PeriodicalId":19523,"journal":{"name":"Oligonucleotides","volume":"19 3","pages":"265-72"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/oli.2008.0150","citationCount":"13","resultStr":"{\"title\":\"Identification and characterization of a highly efficient anti-HIV pol hammerhead ribozyme.\",\"authors\":\"Thea Müller-Kuller,&nbsp;Gianni Capalbo,&nbsp;Christian Klebba,&nbsp;Joachim W Engels,&nbsp;Stefan A Klein\",\"doi\":\"10.1089/oli.2008.0150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to identify and to characterize a highly active anti-HIV ribozyme. Therefore, the genome of HIV-1 IIIb was screened for not yet addressed GUC triplets within highly conserved sequences. Here we report the in vitro characteristics and the antiviral activity of the fittest identified anti-HIV hammerhead ribozyme, targeting the 13th GUC triplet within the HIV-1 pol gene (HHPol13). Multiple turnover kinetics were determined in vitro and revealed very promising kinetic data: V(max) = 39 nM/minute, K(m) = 576 nM, k(cat) = 3.9/minute, and K(cat)/K(m) = 6.8/minute/microM. To analyze its antiviral activity the hammerhead ribozyme was expressed retrovirally in Hut78 cells followed by HIV-1 infection. The newly identified ribozyme conferred a long-term inhibition of HIV-1 replication until the end of the observation period at day 56. We were able to demonstrate that the antiviral activity was mainly due to a ribozyme effect combined with a limited antisense activity. Additionally, the effect of the identified ribozyme was compared with a retrovirally expressed siRNA directed against the same target in the HIV-1 pol gene. This siRNA (siPol13) showed no inhibition of HIV replication. In summary, the hammerhead ribozyme HHPol13 was demonstrated to confer superior cleavage and antiviral activity against HIV-1. These results suggest that even in the RNAi era ribozymes still have the potential as highly active antiviral agents.</p>\",\"PeriodicalId\":19523,\"journal\":{\"name\":\"Oligonucleotides\",\"volume\":\"19 3\",\"pages\":\"265-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/oli.2008.0150\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oligonucleotides\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/oli.2008.0150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oligonucleotides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/oli.2008.0150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本研究的目的是鉴定和表征一种高活性的抗hiv核酶。因此,在HIV-1 IIIb基因组中筛选高度保守序列中尚未定位的GUC三胞胎。本文报道了针对HIV-1 pol基因(HHPol13)中第13个GUC三联体的抗hiv锤头核酶的体外特性和抗病毒活性。体外多次更替动力学测定结果显示:V(max) = 39 nM/min, K(m) = 576 nM, K(cat) = 3.9/min, K(cat)/K(m) = 6.8/min /microM。为了分析其抗病毒活性,在HIV-1感染后的hu78细胞中逆转录表达锤头核酶。新发现的核酶对HIV-1复制具有长期抑制作用,直到第56天观察期结束。我们能够证明抗病毒活性主要是由于核酶作用结合有限的反义活性。此外,将鉴定的核酶的效果与针对HIV-1 pol基因中相同靶标的逆转录siRNA进行了比较。该siRNA (siPol13)对HIV复制没有抑制作用。总之,锤头核酶HHPol13被证明具有优越的切割和抗病毒活性。这些结果表明,即使在RNAi时代,核酶仍然具有作为高活性抗病毒药物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and characterization of a highly efficient anti-HIV pol hammerhead ribozyme.

The aim of this study was to identify and to characterize a highly active anti-HIV ribozyme. Therefore, the genome of HIV-1 IIIb was screened for not yet addressed GUC triplets within highly conserved sequences. Here we report the in vitro characteristics and the antiviral activity of the fittest identified anti-HIV hammerhead ribozyme, targeting the 13th GUC triplet within the HIV-1 pol gene (HHPol13). Multiple turnover kinetics were determined in vitro and revealed very promising kinetic data: V(max) = 39 nM/minute, K(m) = 576 nM, k(cat) = 3.9/minute, and K(cat)/K(m) = 6.8/minute/microM. To analyze its antiviral activity the hammerhead ribozyme was expressed retrovirally in Hut78 cells followed by HIV-1 infection. The newly identified ribozyme conferred a long-term inhibition of HIV-1 replication until the end of the observation period at day 56. We were able to demonstrate that the antiviral activity was mainly due to a ribozyme effect combined with a limited antisense activity. Additionally, the effect of the identified ribozyme was compared with a retrovirally expressed siRNA directed against the same target in the HIV-1 pol gene. This siRNA (siPol13) showed no inhibition of HIV replication. In summary, the hammerhead ribozyme HHPol13 was demonstrated to confer superior cleavage and antiviral activity against HIV-1. These results suggest that even in the RNAi era ribozymes still have the potential as highly active antiviral agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oligonucleotides
Oligonucleotides 生物-生化与分子生物学
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信