{"title":"由苯并咪唑盐和氢化物试剂原位制备的电子和氢原子供体光催化剂","authors":"Ryo Miyajima , Takehiro Kiuchi , Yuki Ooe , Hajime Iwamoto , Shin-ya Takizawa , Eietsu Hasegawa","doi":"10.1016/j.jpap.2023.100195","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic systems consisting of 2-substituted benzimidazoliums (BI<sup>+</sup>–R, R = polycyclic aryl, triarylamine or phenyl-sulfate) and stoichiometric hydride donor reagents were developed. Light emitting diode irradiation of these photocatalysts in the presence of NaBH<sub>4</sub> or picoline borane promotes desulfonylation reactions of an <em>N</em>-sulfonyl indole, <em>N</em>-sulfonyl amide and α-sulfonyl ketone. Absorption spectroscopic and redox potential measurements as well as density functional theory calculations were carried out to gain mechanistic information. Benzimidazolines (BIH–R), generated in situ by hydride reduction of BI<sup>+</sup>–R, serve as both an electron and hydrogen atom donor photocatalysts in these reductive desulfonylation reactions, which contrasts to ordinary reducing photocatalysts that simply donate electrons.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"16 ","pages":"Article 100195"},"PeriodicalIF":3.2610,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron and hydrogen atom donor photocatalysts in situ generated from benzimidazolium salts and hydride reagents\",\"authors\":\"Ryo Miyajima , Takehiro Kiuchi , Yuki Ooe , Hajime Iwamoto , Shin-ya Takizawa , Eietsu Hasegawa\",\"doi\":\"10.1016/j.jpap.2023.100195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photocatalytic systems consisting of 2-substituted benzimidazoliums (BI<sup>+</sup>–R, R = polycyclic aryl, triarylamine or phenyl-sulfate) and stoichiometric hydride donor reagents were developed. Light emitting diode irradiation of these photocatalysts in the presence of NaBH<sub>4</sub> or picoline borane promotes desulfonylation reactions of an <em>N</em>-sulfonyl indole, <em>N</em>-sulfonyl amide and α-sulfonyl ketone. Absorption spectroscopic and redox potential measurements as well as density functional theory calculations were carried out to gain mechanistic information. Benzimidazolines (BIH–R), generated in situ by hydride reduction of BI<sup>+</sup>–R, serve as both an electron and hydrogen atom donor photocatalysts in these reductive desulfonylation reactions, which contrasts to ordinary reducing photocatalysts that simply donate electrons.</p></div>\",\"PeriodicalId\":375,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology\",\"volume\":\"16 \",\"pages\":\"Article 100195\"},\"PeriodicalIF\":3.2610,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666469023000362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology","FirstCategoryId":"2","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666469023000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
建立了由2取代苯并咪唑(BI+ -R, R =多环芳基,三芳胺或硫酸苯基)和化学计量氢化物供体试剂组成的光催化体系。发光二极管在NaBH4或吡啶硼烷存在下照射这些光催化剂,促进了n -磺酰吲哚、n -磺酰酰胺和α-磺酰酮的脱硫反应。吸收光谱和氧化还原电位测量以及密度泛函理论计算得到了机理信息。通过BI+ -R的氢化物还原原位生成的苯并咪唑啉(BIH-R)在这些还原性脱硫反应中同时充当电子和氢原子给体光催化剂,这与仅提供电子的普通还原性光催化剂形成了对比。
Electron and hydrogen atom donor photocatalysts in situ generated from benzimidazolium salts and hydride reagents
Photocatalytic systems consisting of 2-substituted benzimidazoliums (BI+–R, R = polycyclic aryl, triarylamine or phenyl-sulfate) and stoichiometric hydride donor reagents were developed. Light emitting diode irradiation of these photocatalysts in the presence of NaBH4 or picoline borane promotes desulfonylation reactions of an N-sulfonyl indole, N-sulfonyl amide and α-sulfonyl ketone. Absorption spectroscopic and redox potential measurements as well as density functional theory calculations were carried out to gain mechanistic information. Benzimidazolines (BIH–R), generated in situ by hydride reduction of BI+–R, serve as both an electron and hydrogen atom donor photocatalysts in these reductive desulfonylation reactions, which contrasts to ordinary reducing photocatalysts that simply donate electrons.