[非单胺能神经元合成单胺:幻觉还是现实?]。

Journal de la Societe de biologie Pub Date : 2009-01-01 Epub Date: 2009-04-10 DOI:10.1051/jbio:2009013
Mikhail V Ugrumov
{"title":"[非单胺能神经元合成单胺:幻觉还是现实?]。","authors":"Mikhail V Ugrumov","doi":"10.1051/jbio:2009013","DOIUrl":null,"url":null,"abstract":"<p><p>In contrast to monoaminergic (MA-ergic) neurons possessing the whole set of the enzymes for MA synthesis from the precursor amino-acid, some, mostly peptidergic, neurons co-express only one of the enzymes of monoamine synthesis. They are widely distributed in the brain, being particularly numerous in ontogenesis and, in adulthood, under certain physiological conditions. Most monoenzymatic neurons possess one of the enzymes for dopamine (DA) synthesis, tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC). TH and AADC are enzymatically active in a substantial number of monoenzymatic neurons, where they are capable of converting L-tyrosine to L-3,4-dihydroxy-phenylalanine (L-DOPA) and L-DOPA to dopamine (DA) (or 5-hydroxy-tryptophan, 5-HTP to serotonin), respectively. According to our data L-DOPA synthesized in monoenzymatic TH-neurons is released and taken up by monoenzymatic AADC-neurons for DA synthesis. Moreover, L-DOPA captured by dopaminergic neurons and serotoninergic neurons serves to stimulate dopamine synthesis in the former and to start DA synthesis in the latter. Cooperative synthesis of MAs is considered as a compensatory reaction under a failure of MA-ergic neurons, e.g. in neurodegenerative diseases like hyperprolactinemia and Parkinson's disease, which are developed primarily because of degeneration of DA-ergic neurons of the tuberoinfundibular system and the nigrostriatal system, respectively. Noteworthy, the neurotoxin-induced increase of prolactin secretion returns with time to a normal level due to the stimulation of DA synthesis by the tuberoinfundibular most probably monoenzymatic neurons. The same compensatory mechanism is supposed to be used under the failure of the nigrostriatal DA-ergic system that is manifested by an increased number of monoenzymatic neurons in the striatum of animals with neurotoxin-induced parkinsonism and in humans with Parkinson's disease. Expression of the enzymes of MA synthesis in non-monoaminergic neurons is controlled by intercellular signals such as classical neurotransmitters (catecholamines), etc. Thus, a substantial number of brain neurons express partly the monoaminergic phenotype, namely individual complementary enzymes of MA synthesis, serving to produce MAs in cooperation, which is considered as a compensatory reaction under the failure of MA-ergic neurons.</p>","PeriodicalId":80018,"journal":{"name":"Journal de la Societe de biologie","volume":"203 1","pages":"75-85"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/jbio:2009013","citationCount":"5","resultStr":"{\"title\":\"[Synthesis of monoamines by non-monoaminergic neurons: illusion or reality?].\",\"authors\":\"Mikhail V Ugrumov\",\"doi\":\"10.1051/jbio:2009013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In contrast to monoaminergic (MA-ergic) neurons possessing the whole set of the enzymes for MA synthesis from the precursor amino-acid, some, mostly peptidergic, neurons co-express only one of the enzymes of monoamine synthesis. They are widely distributed in the brain, being particularly numerous in ontogenesis and, in adulthood, under certain physiological conditions. Most monoenzymatic neurons possess one of the enzymes for dopamine (DA) synthesis, tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC). TH and AADC are enzymatically active in a substantial number of monoenzymatic neurons, where they are capable of converting L-tyrosine to L-3,4-dihydroxy-phenylalanine (L-DOPA) and L-DOPA to dopamine (DA) (or 5-hydroxy-tryptophan, 5-HTP to serotonin), respectively. According to our data L-DOPA synthesized in monoenzymatic TH-neurons is released and taken up by monoenzymatic AADC-neurons for DA synthesis. Moreover, L-DOPA captured by dopaminergic neurons and serotoninergic neurons serves to stimulate dopamine synthesis in the former and to start DA synthesis in the latter. Cooperative synthesis of MAs is considered as a compensatory reaction under a failure of MA-ergic neurons, e.g. in neurodegenerative diseases like hyperprolactinemia and Parkinson's disease, which are developed primarily because of degeneration of DA-ergic neurons of the tuberoinfundibular system and the nigrostriatal system, respectively. Noteworthy, the neurotoxin-induced increase of prolactin secretion returns with time to a normal level due to the stimulation of DA synthesis by the tuberoinfundibular most probably monoenzymatic neurons. The same compensatory mechanism is supposed to be used under the failure of the nigrostriatal DA-ergic system that is manifested by an increased number of monoenzymatic neurons in the striatum of animals with neurotoxin-induced parkinsonism and in humans with Parkinson's disease. Expression of the enzymes of MA synthesis in non-monoaminergic neurons is controlled by intercellular signals such as classical neurotransmitters (catecholamines), etc. Thus, a substantial number of brain neurons express partly the monoaminergic phenotype, namely individual complementary enzymes of MA synthesis, serving to produce MAs in cooperation, which is considered as a compensatory reaction under the failure of MA-ergic neurons.</p>\",\"PeriodicalId\":80018,\"journal\":{\"name\":\"Journal de la Societe de biologie\",\"volume\":\"203 1\",\"pages\":\"75-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/jbio:2009013\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de la Societe de biologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/jbio:2009013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2009/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de la Societe de biologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/jbio:2009013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/4/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

与拥有从前体氨基酸合成MA的全套酶的单胺能(MA-能)神经元相反,一些神经元,主要是肽能神经元,只共同表达单胺合成的一种酶。它们广泛分布于大脑中,在个体发育时期和成年时期,在某些生理条件下数量特别多。大多数单酶神经元具有多巴胺(DA)合成酶之一,酪氨酸羟化酶(TH)或芳香l -氨基酸脱羧酶(AADC)。TH和AADC在大量单酶神经元中具有酶活性,它们能够分别将l -酪氨酸转化为l -3,4-二羟基苯丙氨酸(L-DOPA)和L-DOPA转化为多巴胺(DA)(或5-羟基色氨酸,5-HTP转化为血清素)。根据我们的数据,单酶th神经元合成的L-DOPA被释放并被单酶aadc神经元吸收用于DA合成。此外,多巴胺能神经元和5 -羟色胺能神经元捕获的左旋多巴刺激前者的多巴胺合成,并启动后者的DA合成。MAs的协同合成被认为是ma能神经元失效时的代偿反应,例如在高催乳素血症和帕金森病等神经退行性疾病中,这两种疾病主要是由于结节基底系统和黑质纹状体系统的da能神经元退化而发展起来的。值得注意的是,神经毒素引起的催乳素分泌的增加随着时间的推移恢复到正常水平,这是由于最可能是单酶神经元对DA合成的刺激。同样的代偿机制被认为适用于黑质纹状体da能系统的失效,表现为神经毒素诱导的帕金森动物和帕金森病患者纹状体中单酶神经元数量的增加。非单胺神经元中MA合成酶的表达受经典神经递质(儿茶酚胺)等细胞间信号控制。因此,大量脑神经元部分表达单胺能表型,即MA合成的单个互补酶,协同产生MAs,这被认为是MA能神经元失效时的代偿反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Synthesis of monoamines by non-monoaminergic neurons: illusion or reality?].

In contrast to monoaminergic (MA-ergic) neurons possessing the whole set of the enzymes for MA synthesis from the precursor amino-acid, some, mostly peptidergic, neurons co-express only one of the enzymes of monoamine synthesis. They are widely distributed in the brain, being particularly numerous in ontogenesis and, in adulthood, under certain physiological conditions. Most monoenzymatic neurons possess one of the enzymes for dopamine (DA) synthesis, tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC). TH and AADC are enzymatically active in a substantial number of monoenzymatic neurons, where they are capable of converting L-tyrosine to L-3,4-dihydroxy-phenylalanine (L-DOPA) and L-DOPA to dopamine (DA) (or 5-hydroxy-tryptophan, 5-HTP to serotonin), respectively. According to our data L-DOPA synthesized in monoenzymatic TH-neurons is released and taken up by monoenzymatic AADC-neurons for DA synthesis. Moreover, L-DOPA captured by dopaminergic neurons and serotoninergic neurons serves to stimulate dopamine synthesis in the former and to start DA synthesis in the latter. Cooperative synthesis of MAs is considered as a compensatory reaction under a failure of MA-ergic neurons, e.g. in neurodegenerative diseases like hyperprolactinemia and Parkinson's disease, which are developed primarily because of degeneration of DA-ergic neurons of the tuberoinfundibular system and the nigrostriatal system, respectively. Noteworthy, the neurotoxin-induced increase of prolactin secretion returns with time to a normal level due to the stimulation of DA synthesis by the tuberoinfundibular most probably monoenzymatic neurons. The same compensatory mechanism is supposed to be used under the failure of the nigrostriatal DA-ergic system that is manifested by an increased number of monoenzymatic neurons in the striatum of animals with neurotoxin-induced parkinsonism and in humans with Parkinson's disease. Expression of the enzymes of MA synthesis in non-monoaminergic neurons is controlled by intercellular signals such as classical neurotransmitters (catecholamines), etc. Thus, a substantial number of brain neurons express partly the monoaminergic phenotype, namely individual complementary enzymes of MA synthesis, serving to produce MAs in cooperation, which is considered as a compensatory reaction under the failure of MA-ergic neurons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信