Marcie J.R. Plishka, Akihiko Tsuneda, Randolph S. Currah
{"title":"龙舌兰科一种闭囊虫的形态与发育","authors":"Marcie J.R. Plishka, Akihiko Tsuneda, Randolph S. Currah","doi":"10.1016/j.mycres.2009.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>Recent DNA sequence analyses indicated that <em>Nigrosabulum globosum</em> is a cleistothecial representative of the <em>Bionectriaceae</em> in the <em>Hypocreales</em>, but morphological characters supporting this relationship are unknown. Using light and electron microscopy we followed the development of the ascomata of this species, from the formation of gametangia through to the development of mature ascospores, and observed a series of characters that confirmed its hypocrealean affinities. These included the formation of a gel-filled centrum during early stages of ascoma development, the subsequent appearance of hyaline peridial tissue enclosed within a layer we interpret as representing a melanized uniloculate stroma, apically derived paraphyses, and an ascogenous system that gives rise to asci that were both cylindrical to clavate and globose. Ascospores, previously reported to be smooth, were ornamented with a honeycomb-like reticulum and were able to germinate within the ascoma. The carbonaceous outer (stromatic) walls of the mature, grit-like cleistothecia indicate possible resistance to UV radiation and desiccation. Furthermore, the complement of germinated ascospores would enable mature ascomata to function as propagules that could quickly initiate new growth when transferred to fresh substrate. Our reexamination of <em>N. globosum</em> also provides data that support the hypothesized close relationship with other bionectriaceous, cleistothecial coprophiles, i.e., species of <em>Hapsidospora</em>, and <em>Bulbithecium</em> in particular.</p></div>","PeriodicalId":19045,"journal":{"name":"Mycological research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mycres.2009.02.005","citationCount":"5","resultStr":"{\"title\":\"Morphology and development of Nigrosabulum globosum, a cleistothecial coprophile in the Bionectriaceae (Hypocreales)\",\"authors\":\"Marcie J.R. Plishka, Akihiko Tsuneda, Randolph S. Currah\",\"doi\":\"10.1016/j.mycres.2009.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent DNA sequence analyses indicated that <em>Nigrosabulum globosum</em> is a cleistothecial representative of the <em>Bionectriaceae</em> in the <em>Hypocreales</em>, but morphological characters supporting this relationship are unknown. Using light and electron microscopy we followed the development of the ascomata of this species, from the formation of gametangia through to the development of mature ascospores, and observed a series of characters that confirmed its hypocrealean affinities. These included the formation of a gel-filled centrum during early stages of ascoma development, the subsequent appearance of hyaline peridial tissue enclosed within a layer we interpret as representing a melanized uniloculate stroma, apically derived paraphyses, and an ascogenous system that gives rise to asci that were both cylindrical to clavate and globose. Ascospores, previously reported to be smooth, were ornamented with a honeycomb-like reticulum and were able to germinate within the ascoma. The carbonaceous outer (stromatic) walls of the mature, grit-like cleistothecia indicate possible resistance to UV radiation and desiccation. Furthermore, the complement of germinated ascospores would enable mature ascomata to function as propagules that could quickly initiate new growth when transferred to fresh substrate. Our reexamination of <em>N. globosum</em> also provides data that support the hypothesized close relationship with other bionectriaceous, cleistothecial coprophiles, i.e., species of <em>Hapsidospora</em>, and <em>Bulbithecium</em> in particular.</p></div>\",\"PeriodicalId\":19045,\"journal\":{\"name\":\"Mycological research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mycres.2009.02.005\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycological research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0953756209000471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycological research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0953756209000471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Morphology and development of Nigrosabulum globosum, a cleistothecial coprophile in the Bionectriaceae (Hypocreales)
Recent DNA sequence analyses indicated that Nigrosabulum globosum is a cleistothecial representative of the Bionectriaceae in the Hypocreales, but morphological characters supporting this relationship are unknown. Using light and electron microscopy we followed the development of the ascomata of this species, from the formation of gametangia through to the development of mature ascospores, and observed a series of characters that confirmed its hypocrealean affinities. These included the formation of a gel-filled centrum during early stages of ascoma development, the subsequent appearance of hyaline peridial tissue enclosed within a layer we interpret as representing a melanized uniloculate stroma, apically derived paraphyses, and an ascogenous system that gives rise to asci that were both cylindrical to clavate and globose. Ascospores, previously reported to be smooth, were ornamented with a honeycomb-like reticulum and were able to germinate within the ascoma. The carbonaceous outer (stromatic) walls of the mature, grit-like cleistothecia indicate possible resistance to UV radiation and desiccation. Furthermore, the complement of germinated ascospores would enable mature ascomata to function as propagules that could quickly initiate new growth when transferred to fresh substrate. Our reexamination of N. globosum also provides data that support the hypothesized close relationship with other bionectriaceous, cleistothecial coprophiles, i.e., species of Hapsidospora, and Bulbithecium in particular.