{"title":"在哺乳动物中枢神经系统突触中,一种异质的突触囊泡“静息”池在钮扣间动态交换。","authors":"Tomas Fernandez-Alfonso, Timothy A Ryan","doi":"10.1007/s11068-008-9030-y","DOIUrl":null,"url":null,"abstract":"<p><p>Using pHluorin-tagged synaptic vesicle proteins we have examined the partitioning of these probes into recycling and nonrecycling pools at hippocampal nerve terminals in cell culture. Our studies show that for three of the major synaptic vesicle components, vGlut-1, VAMP-2, and Synaptotagmin I, approximately 50-60% of the tagged protein appears in a recycling pool that responds readily to sustained action potential stimulation by mobilizing and fusing with the plasma membrane, while the remainder is targeted to a nonrecycling, acidic compartment. The fraction of recycling and nonrecycling (or resting) pools varied significantly across boutons within an individual axon, from 100% resting (silent) to 100% recycling. Single-bouton bleaching studies show that recycling and resting pools are dynamic and exchange between synaptic boutons. The quantitative parameters that can be extracted with the approaches outlined here should help elucidate the potential functional role of the resting vesicle pool.</p>","PeriodicalId":72445,"journal":{"name":"Brain cell biology","volume":" ","pages":"87-100"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-008-9030-y","citationCount":"91","resultStr":"{\"title\":\"A heterogeneous \\\"resting\\\" pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses.\",\"authors\":\"Tomas Fernandez-Alfonso, Timothy A Ryan\",\"doi\":\"10.1007/s11068-008-9030-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Using pHluorin-tagged synaptic vesicle proteins we have examined the partitioning of these probes into recycling and nonrecycling pools at hippocampal nerve terminals in cell culture. Our studies show that for three of the major synaptic vesicle components, vGlut-1, VAMP-2, and Synaptotagmin I, approximately 50-60% of the tagged protein appears in a recycling pool that responds readily to sustained action potential stimulation by mobilizing and fusing with the plasma membrane, while the remainder is targeted to a nonrecycling, acidic compartment. The fraction of recycling and nonrecycling (or resting) pools varied significantly across boutons within an individual axon, from 100% resting (silent) to 100% recycling. Single-bouton bleaching studies show that recycling and resting pools are dynamic and exchange between synaptic boutons. The quantitative parameters that can be extracted with the approaches outlined here should help elucidate the potential functional role of the resting vesicle pool.</p>\",\"PeriodicalId\":72445,\"journal\":{\"name\":\"Brain cell biology\",\"volume\":\" \",\"pages\":\"87-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11068-008-9030-y\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain cell biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11068-008-9030-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2008/10/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11068-008-9030-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2008/10/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A heterogeneous "resting" pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses.
Using pHluorin-tagged synaptic vesicle proteins we have examined the partitioning of these probes into recycling and nonrecycling pools at hippocampal nerve terminals in cell culture. Our studies show that for three of the major synaptic vesicle components, vGlut-1, VAMP-2, and Synaptotagmin I, approximately 50-60% of the tagged protein appears in a recycling pool that responds readily to sustained action potential stimulation by mobilizing and fusing with the plasma membrane, while the remainder is targeted to a nonrecycling, acidic compartment. The fraction of recycling and nonrecycling (or resting) pools varied significantly across boutons within an individual axon, from 100% resting (silent) to 100% recycling. Single-bouton bleaching studies show that recycling and resting pools are dynamic and exchange between synaptic boutons. The quantitative parameters that can be extracted with the approaches outlined here should help elucidate the potential functional role of the resting vesicle pool.