Xiaoyu Zhang, Chandrajit L Bajaj, Bongjune Kwon, Todd J Dolinsky, Jens E Nielsen, Nathan A Baker
{"title":"在缺乏整体结构相似性的情况下,应用新的多分辨率方法比较生物分子静电特性。","authors":"Xiaoyu Zhang, Chandrajit L Bajaj, Bongjune Kwon, Todd J Dolinsky, Jens E Nielsen, Nathan A Baker","doi":"10.1137/050647670","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we present a method for the multi-resolution comparison of biomolecular electrostatic potentials without the need for global structural alignment of the biomolecules. The underlying computational geometry algorithm uses multi-resolution attributed contour trees (MACTs) to compare the topological features of volumetric scalar fields. We apply the MACTs to compute electrostatic similarity metrics for a large set of protein chains with varying degrees of sequence, structure, and function similarity. For calibration, we also compute similarity metrics for these chains by a more traditional approach based upon 3D structural alignment and analysis of Carbo similarity indices. Moreover, because the MACT approach does not rely upon pairwise structural alignment, its accuracy and efficiency promises to perform well on future large-scale classification efforts across groups of structurally-diverse proteins. The MACT method discriminates between protein chains at a level comparable to the Carbo similarity index method; i.e., it is able to accurately cluster proteins into functionally-relevant groups which demonstrate strong dependence on ligand binding sites. The results of the analyses are available from the linked web databases http://ccvweb.cres.utexas.edu/MolSignature/ and http://agave.wustl.edu/similarity/. The MACT analysis tools are available as part of the public domain library of the Topological Analysis and Quantitative Tools (TAQT) from the Center of Computational Visualization, at the University of Texas at Austin (http://ccvweb.csres.utexas.edu/software). The Carbo software is available for download with the open-source APBS software package at http://apbs.sf.net/.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561295/pdf/nihms50731.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of new multi-resolution methods for the comparison of biomolecular electrostatic properties in the absence of global structural similarity.\",\"authors\":\"Xiaoyu Zhang, Chandrajit L Bajaj, Bongjune Kwon, Todd J Dolinsky, Jens E Nielsen, Nathan A Baker\",\"doi\":\"10.1137/050647670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we present a method for the multi-resolution comparison of biomolecular electrostatic potentials without the need for global structural alignment of the biomolecules. The underlying computational geometry algorithm uses multi-resolution attributed contour trees (MACTs) to compare the topological features of volumetric scalar fields. We apply the MACTs to compute electrostatic similarity metrics for a large set of protein chains with varying degrees of sequence, structure, and function similarity. For calibration, we also compute similarity metrics for these chains by a more traditional approach based upon 3D structural alignment and analysis of Carbo similarity indices. Moreover, because the MACT approach does not rely upon pairwise structural alignment, its accuracy and efficiency promises to perform well on future large-scale classification efforts across groups of structurally-diverse proteins. The MACT method discriminates between protein chains at a level comparable to the Carbo similarity index method; i.e., it is able to accurately cluster proteins into functionally-relevant groups which demonstrate strong dependence on ligand binding sites. The results of the analyses are available from the linked web databases http://ccvweb.cres.utexas.edu/MolSignature/ and http://agave.wustl.edu/similarity/. The MACT analysis tools are available as part of the public domain library of the Topological Analysis and Quantitative Tools (TAQT) from the Center of Computational Visualization, at the University of Texas at Austin (http://ccvweb.csres.utexas.edu/software). The Carbo software is available for download with the open-source APBS software package at http://apbs.sf.net/.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2561295/pdf/nihms50731.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/050647670\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/050647670","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of new multi-resolution methods for the comparison of biomolecular electrostatic properties in the absence of global structural similarity.
In this paper we present a method for the multi-resolution comparison of biomolecular electrostatic potentials without the need for global structural alignment of the biomolecules. The underlying computational geometry algorithm uses multi-resolution attributed contour trees (MACTs) to compare the topological features of volumetric scalar fields. We apply the MACTs to compute electrostatic similarity metrics for a large set of protein chains with varying degrees of sequence, structure, and function similarity. For calibration, we also compute similarity metrics for these chains by a more traditional approach based upon 3D structural alignment and analysis of Carbo similarity indices. Moreover, because the MACT approach does not rely upon pairwise structural alignment, its accuracy and efficiency promises to perform well on future large-scale classification efforts across groups of structurally-diverse proteins. The MACT method discriminates between protein chains at a level comparable to the Carbo similarity index method; i.e., it is able to accurately cluster proteins into functionally-relevant groups which demonstrate strong dependence on ligand binding sites. The results of the analyses are available from the linked web databases http://ccvweb.cres.utexas.edu/MolSignature/ and http://agave.wustl.edu/similarity/. The MACT analysis tools are available as part of the public domain library of the Topological Analysis and Quantitative Tools (TAQT) from the Center of Computational Visualization, at the University of Texas at Austin (http://ccvweb.csres.utexas.edu/software). The Carbo software is available for download with the open-source APBS software package at http://apbs.sf.net/.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.