{"title":"以水氯(苯并咪唑)-铜(II)为杂交指示剂,利用长链探针增强杂交信号检测DNA。","authors":"Xue-Mei Li, Shan-Shan Gu, Shu-Sheng Zhang","doi":"10.1089/oli.2008.0132","DOIUrl":null,"url":null,"abstract":"<p><p>A simple and sensitive method for electrochemical detection of DNA was designed. This DNA sensor was based on a \"sandwich\" detection strategy, which involved a long capture probe DNA immobilized on glassy carbon electrodes that flanked both the reference DNA and target DNA. Electrochemical signals were measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using aquadichloro(benzimidazole)-copper(II), Cu(bzim)(H(2)O)Cl(2), as an electroactive indicator. An improving amount of Cu(bzim)(H(2)O)Cl(2) was interacted with the hybrid DNA via the incorporation of a long-probe DNA and a reference DNA in this sensor. As a result of this effect, this sensor design significantly enhanced the sensitivity. With 48-mer probe DNA and 27-mer reference DNA, the proposed method could be used for detection of 21-mer ssDNA ranging from 1.32 x 10(-7) to 2.52 x 10(-6) M with a detection limit of 2.94 x 10(-8) M. Electrochemical DNA biosensors were also developed using the same long-probe sequence as the target sequence with the novel hybridization indicator, Cu(bzim) (H(2)O)Cl(2). The detection limits for the complementary 21-mer target and 27-mer target were 9.52 x 10(-8) M and 5.81 x 10(-8) M, respectively. The results showed that the sensor with long-probe DNA and reference DNA is far more sensitive than that with nonswitch assay.</p>","PeriodicalId":19523,"journal":{"name":"Oligonucleotides","volume":"18 3","pages":"287-94"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/oli.2008.0132","citationCount":"0","resultStr":"{\"title\":\"Hybridization signal enhancement via long-stranded probe for detection of DNA using aquadichloro (benzimidazole)-copper(II) as hybridization indicator.\",\"authors\":\"Xue-Mei Li, Shan-Shan Gu, Shu-Sheng Zhang\",\"doi\":\"10.1089/oli.2008.0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A simple and sensitive method for electrochemical detection of DNA was designed. This DNA sensor was based on a \\\"sandwich\\\" detection strategy, which involved a long capture probe DNA immobilized on glassy carbon electrodes that flanked both the reference DNA and target DNA. Electrochemical signals were measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using aquadichloro(benzimidazole)-copper(II), Cu(bzim)(H(2)O)Cl(2), as an electroactive indicator. An improving amount of Cu(bzim)(H(2)O)Cl(2) was interacted with the hybrid DNA via the incorporation of a long-probe DNA and a reference DNA in this sensor. As a result of this effect, this sensor design significantly enhanced the sensitivity. With 48-mer probe DNA and 27-mer reference DNA, the proposed method could be used for detection of 21-mer ssDNA ranging from 1.32 x 10(-7) to 2.52 x 10(-6) M with a detection limit of 2.94 x 10(-8) M. Electrochemical DNA biosensors were also developed using the same long-probe sequence as the target sequence with the novel hybridization indicator, Cu(bzim) (H(2)O)Cl(2). The detection limits for the complementary 21-mer target and 27-mer target were 9.52 x 10(-8) M and 5.81 x 10(-8) M, respectively. The results showed that the sensor with long-probe DNA and reference DNA is far more sensitive than that with nonswitch assay.</p>\",\"PeriodicalId\":19523,\"journal\":{\"name\":\"Oligonucleotides\",\"volume\":\"18 3\",\"pages\":\"287-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/oli.2008.0132\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oligonucleotides\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/oli.2008.0132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oligonucleotides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/oli.2008.0132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybridization signal enhancement via long-stranded probe for detection of DNA using aquadichloro (benzimidazole)-copper(II) as hybridization indicator.
A simple and sensitive method for electrochemical detection of DNA was designed. This DNA sensor was based on a "sandwich" detection strategy, which involved a long capture probe DNA immobilized on glassy carbon electrodes that flanked both the reference DNA and target DNA. Electrochemical signals were measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using aquadichloro(benzimidazole)-copper(II), Cu(bzim)(H(2)O)Cl(2), as an electroactive indicator. An improving amount of Cu(bzim)(H(2)O)Cl(2) was interacted with the hybrid DNA via the incorporation of a long-probe DNA and a reference DNA in this sensor. As a result of this effect, this sensor design significantly enhanced the sensitivity. With 48-mer probe DNA and 27-mer reference DNA, the proposed method could be used for detection of 21-mer ssDNA ranging from 1.32 x 10(-7) to 2.52 x 10(-6) M with a detection limit of 2.94 x 10(-8) M. Electrochemical DNA biosensors were also developed using the same long-probe sequence as the target sequence with the novel hybridization indicator, Cu(bzim) (H(2)O)Cl(2). The detection limits for the complementary 21-mer target and 27-mer target were 9.52 x 10(-8) M and 5.81 x 10(-8) M, respectively. The results showed that the sensor with long-probe DNA and reference DNA is far more sensitive than that with nonswitch assay.