{"title":"[果蝇的抗病毒免疫]。","authors":"Delphine Galiana-Arnoux, Safia Deddouche, Jean-Luc Imler","doi":"10.1051/jbio:2007906","DOIUrl":null,"url":null,"abstract":"<p><p>Viral diseases represent a constant threat and an important cause of mortality worldwide. We have developed a model to study the response to RNA virus infection in the fruit-fly drosophila. This insect is a good model to study the genetic bases of innate immunity, which constitutes the first level of host-defense in animals. We have shown that viral infection in drosophila triggers a response different from that to bacterial or fungal infections. Our data at this stage point to the existence of at least two types of antiviral defense mechanisms. On one hand, viral infection triggers a JAK-STAT dependent transcriptional response that leads to the expression of antiviral molecules that remain to be characterized. On the other hand, viral RNAs are recognized by Dicer-2 and degraded in siRNAs, thus inducing RNA interference and degradation of viral RNAs. Strikingly, the drosophila antiviral response evokes by some aspects the interferon response in mammals (JAK-STAT pathway) and antiviral defenses in plants (RNA interference).</p>","PeriodicalId":80018,"journal":{"name":"Journal de la Societe de biologie","volume":"201 4","pages":"359-65"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/jbio:2007906","citationCount":"2","resultStr":"{\"title\":\"[Antiviral immunity in drosophila].\",\"authors\":\"Delphine Galiana-Arnoux, Safia Deddouche, Jean-Luc Imler\",\"doi\":\"10.1051/jbio:2007906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Viral diseases represent a constant threat and an important cause of mortality worldwide. We have developed a model to study the response to RNA virus infection in the fruit-fly drosophila. This insect is a good model to study the genetic bases of innate immunity, which constitutes the first level of host-defense in animals. We have shown that viral infection in drosophila triggers a response different from that to bacterial or fungal infections. Our data at this stage point to the existence of at least two types of antiviral defense mechanisms. On one hand, viral infection triggers a JAK-STAT dependent transcriptional response that leads to the expression of antiviral molecules that remain to be characterized. On the other hand, viral RNAs are recognized by Dicer-2 and degraded in siRNAs, thus inducing RNA interference and degradation of viral RNAs. Strikingly, the drosophila antiviral response evokes by some aspects the interferon response in mammals (JAK-STAT pathway) and antiviral defenses in plants (RNA interference).</p>\",\"PeriodicalId\":80018,\"journal\":{\"name\":\"Journal de la Societe de biologie\",\"volume\":\"201 4\",\"pages\":\"359-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/jbio:2007906\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de la Societe de biologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/jbio:2007906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2008/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de la Societe de biologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/jbio:2007906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2008/3/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Viral diseases represent a constant threat and an important cause of mortality worldwide. We have developed a model to study the response to RNA virus infection in the fruit-fly drosophila. This insect is a good model to study the genetic bases of innate immunity, which constitutes the first level of host-defense in animals. We have shown that viral infection in drosophila triggers a response different from that to bacterial or fungal infections. Our data at this stage point to the existence of at least two types of antiviral defense mechanisms. On one hand, viral infection triggers a JAK-STAT dependent transcriptional response that leads to the expression of antiviral molecules that remain to be characterized. On the other hand, viral RNAs are recognized by Dicer-2 and degraded in siRNAs, thus inducing RNA interference and degradation of viral RNAs. Strikingly, the drosophila antiviral response evokes by some aspects the interferon response in mammals (JAK-STAT pathway) and antiviral defenses in plants (RNA interference).