通过内皮细胞接触控制白细胞外渗的分子机制。

D Vestweber
{"title":"通过内皮细胞接触控制白细胞外渗的分子机制。","authors":"D Vestweber","doi":"10.1007/2789_2007_063","DOIUrl":null,"url":null,"abstract":"<p><p>Leukocyte extravasation and entry into tissue forms the basis for inflammatory reactions and lymphocyte surveillance. After docking at the blood vessel wall at sites of exit leukocytes migrate through the endothelial cell layer and the underlying basement membrane, a process described as diapedesis. In recent years, several endothelial membrane proteins that which participate in this process have been identified. This review focuses on three membrane proteins located at endothelial cell contacts that are involved in the regulation of leukocyte diapedesis. The endothelial cell selective adhesion molecule (ESAM) at endothelial tight junctions and the vascular endothelial receptor-type protein tyrosine phosphatase (VE-PTP), a protein associating with VE-cadherin, both seem to control the integrity of endothelial cell contacts during diapedesis. CD99 and the distantly related CD99L2 are leukocyte membrane proteins that do not belong to any known protein family. They are expressed at endothelial cell contacts and participate in the migration of leukocytes through endothelium and basement membrane.</p>","PeriodicalId":87471,"journal":{"name":"Ernst Schering Foundation symposium proceedings","volume":" 3","pages":"151-67"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/2789_2007_063","citationCount":"24","resultStr":"{\"title\":\"Molecular mechanisms that control leukocyte extravasation through endothelial cell contacts.\",\"authors\":\"D Vestweber\",\"doi\":\"10.1007/2789_2007_063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leukocyte extravasation and entry into tissue forms the basis for inflammatory reactions and lymphocyte surveillance. After docking at the blood vessel wall at sites of exit leukocytes migrate through the endothelial cell layer and the underlying basement membrane, a process described as diapedesis. In recent years, several endothelial membrane proteins that which participate in this process have been identified. This review focuses on three membrane proteins located at endothelial cell contacts that are involved in the regulation of leukocyte diapedesis. The endothelial cell selective adhesion molecule (ESAM) at endothelial tight junctions and the vascular endothelial receptor-type protein tyrosine phosphatase (VE-PTP), a protein associating with VE-cadherin, both seem to control the integrity of endothelial cell contacts during diapedesis. CD99 and the distantly related CD99L2 are leukocyte membrane proteins that do not belong to any known protein family. They are expressed at endothelial cell contacts and participate in the migration of leukocytes through endothelium and basement membrane.</p>\",\"PeriodicalId\":87471,\"journal\":{\"name\":\"Ernst Schering Foundation symposium proceedings\",\"volume\":\" 3\",\"pages\":\"151-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/2789_2007_063\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ernst Schering Foundation symposium proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/2789_2007_063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ernst Schering Foundation symposium proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/2789_2007_063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

白细胞外渗和进入组织是炎症反应和淋巴细胞监视的基础。在血管壁出口处停靠后,白细胞通过内皮细胞层和其下的基底膜迁移,这一过程被称为渗出。近年来,已经发现了参与这一过程的几种内皮膜蛋白。本文综述了三种位于内皮细胞接触处的膜蛋白,它们参与了白细胞浸润的调节。内皮细胞紧密连接处的内皮细胞选择性粘附分子(ESAM)和血管内皮受体型蛋白酪氨酸磷酸酶(VE-PTP),一种与ve -钙粘蛋白相关的蛋白,似乎都控制着浸润过程中内皮细胞接触的完整性。CD99和远亲CD99L2是白细胞膜蛋白,不属于任何已知的蛋白家族。它们在内皮细胞接触处表达,参与白细胞通过内皮和基底膜的迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular mechanisms that control leukocyte extravasation through endothelial cell contacts.

Leukocyte extravasation and entry into tissue forms the basis for inflammatory reactions and lymphocyte surveillance. After docking at the blood vessel wall at sites of exit leukocytes migrate through the endothelial cell layer and the underlying basement membrane, a process described as diapedesis. In recent years, several endothelial membrane proteins that which participate in this process have been identified. This review focuses on three membrane proteins located at endothelial cell contacts that are involved in the regulation of leukocyte diapedesis. The endothelial cell selective adhesion molecule (ESAM) at endothelial tight junctions and the vascular endothelial receptor-type protein tyrosine phosphatase (VE-PTP), a protein associating with VE-cadherin, both seem to control the integrity of endothelial cell contacts during diapedesis. CD99 and the distantly related CD99L2 are leukocyte membrane proteins that do not belong to any known protein family. They are expressed at endothelial cell contacts and participate in the migration of leukocytes through endothelium and basement membrane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信