{"title":"鱼类对原生动物疾病的保护性免疫。","authors":"P T K Woo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for and costs of producing land-based animal protein continues to escalate as the world population increases. Fish is an excellent protein, but the catch-fishery is stagnant or in decline. Intensive cage culture of fish is a viable option especially in countries with lakes/rivers and/or a long coastline; however, disease outbreaks will likely occur more frequently with cage culture. Hence protective strategies are needed, and one approach is to exploit the piscine immune system. This discussion highlights immunity (innate/natural and adaptive/acquired) in fish against three pathogenic protozoa (Amyloodinium ocellatum, Ichthyophthirius multifiliis and Cryptobia salmositica). Histone-like proteins in the mucus and skin of naturally resistant fish kill trophonts of A. ocellatum, and also may cause abnormal development of tomonts. Breeding of Cryptobia-resistant brook charrs is possible as resistance is controlled by a dominant Mendelian locus, and the parasite is lysed via the Alternative Pathway of Complement Activation. Production of transgenic Cryptobia-tolerant salmon is an option. Recovered fish are protected from the three diseases (acquired immunity). Live I. multifiliis theronts injected intraperitoneally into fish elicit protection. Also, a recombinant immoblizing-antigen vaccine against ichthyophthirosis has been developed but further evaluations are necessary. The live Cryptobia vaccine protects salmonids from infections while the DNA-vaccine stimulates production of antibodies to neutralize the disease causing factor (metalloprotease) in cryptobiosis; hence infected fish recover more rapidly.</p>","PeriodicalId":76304,"journal":{"name":"Parassitologia","volume":"49 3","pages":"185-91"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective immunity in fish against protozoan diseases.\",\"authors\":\"P T K Woo\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The demand for and costs of producing land-based animal protein continues to escalate as the world population increases. Fish is an excellent protein, but the catch-fishery is stagnant or in decline. Intensive cage culture of fish is a viable option especially in countries with lakes/rivers and/or a long coastline; however, disease outbreaks will likely occur more frequently with cage culture. Hence protective strategies are needed, and one approach is to exploit the piscine immune system. This discussion highlights immunity (innate/natural and adaptive/acquired) in fish against three pathogenic protozoa (Amyloodinium ocellatum, Ichthyophthirius multifiliis and Cryptobia salmositica). Histone-like proteins in the mucus and skin of naturally resistant fish kill trophonts of A. ocellatum, and also may cause abnormal development of tomonts. Breeding of Cryptobia-resistant brook charrs is possible as resistance is controlled by a dominant Mendelian locus, and the parasite is lysed via the Alternative Pathway of Complement Activation. Production of transgenic Cryptobia-tolerant salmon is an option. Recovered fish are protected from the three diseases (acquired immunity). Live I. multifiliis theronts injected intraperitoneally into fish elicit protection. Also, a recombinant immoblizing-antigen vaccine against ichthyophthirosis has been developed but further evaluations are necessary. The live Cryptobia vaccine protects salmonids from infections while the DNA-vaccine stimulates production of antibodies to neutralize the disease causing factor (metalloprotease) in cryptobiosis; hence infected fish recover more rapidly.</p>\",\"PeriodicalId\":76304,\"journal\":{\"name\":\"Parassitologia\",\"volume\":\"49 3\",\"pages\":\"185-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parassitologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parassitologia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protective immunity in fish against protozoan diseases.
The demand for and costs of producing land-based animal protein continues to escalate as the world population increases. Fish is an excellent protein, but the catch-fishery is stagnant or in decline. Intensive cage culture of fish is a viable option especially in countries with lakes/rivers and/or a long coastline; however, disease outbreaks will likely occur more frequently with cage culture. Hence protective strategies are needed, and one approach is to exploit the piscine immune system. This discussion highlights immunity (innate/natural and adaptive/acquired) in fish against three pathogenic protozoa (Amyloodinium ocellatum, Ichthyophthirius multifiliis and Cryptobia salmositica). Histone-like proteins in the mucus and skin of naturally resistant fish kill trophonts of A. ocellatum, and also may cause abnormal development of tomonts. Breeding of Cryptobia-resistant brook charrs is possible as resistance is controlled by a dominant Mendelian locus, and the parasite is lysed via the Alternative Pathway of Complement Activation. Production of transgenic Cryptobia-tolerant salmon is an option. Recovered fish are protected from the three diseases (acquired immunity). Live I. multifiliis theronts injected intraperitoneally into fish elicit protection. Also, a recombinant immoblizing-antigen vaccine against ichthyophthirosis has been developed but further evaluations are necessary. The live Cryptobia vaccine protects salmonids from infections while the DNA-vaccine stimulates production of antibodies to neutralize the disease causing factor (metalloprotease) in cryptobiosis; hence infected fish recover more rapidly.