化学自养内共生:共生发生的当代模式?

Sophie Sanchez, Stéphane Hourdez, François H Lallier
{"title":"化学自养内共生:共生发生的当代模式?","authors":"Sophie Sanchez,&nbsp;Stéphane Hourdez,&nbsp;François H Lallier","doi":"10.1051/jbio:2007036","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen appears to be one of the key factors in understanding the evolution of life on Earth. Almost absent during more than 2 billion years, its subsequent increase is correlated with the emergence of oxygenic photosynthesis by Cyanobacteria, followed by aerobic Prokaryotes and eventually Eukaryotes, all primitively aerobic, and more recently, the development of complex multicellular organisms. However, in some reduced environments, still present at the surface of the Earth and even more so in ocean depths (hydrothermal vents, cold seeps, massive organic falls,...), anaerobic or micro-aerobic Prokaryotes continue to grow, including some chemoautotrophic bacteria deriving energy from sulfide oxidation for instance. A few Metazoa have managed to collaborate with such chemoautotroph Prokaryotes, the most abundant species forming endosymbiotic associations. The most studied of these endosymbioses (the mussels Bathymodiolus, the vestimentiferan tubeworm Riftia pachyptila, or the clams Calyptogena) have revealed important differences in the degree of interdependence between host and symbionts, and in the mode of symbiont transmission. The evolutive process of these symbioses is reminiscent of the primary endosymbioses which have given rise to the organelles of heterotrophic Eukaryotes (mitochondria) and phototrophic Eukaryotes (chloroplasts). The study of these modern days biological models could shed light on symbiogenesis itself and also potentially reveal thiotrophic Eukaryotes as a new lineage.</p>","PeriodicalId":80018,"journal":{"name":"Journal de la Societe de biologie","volume":"201 3","pages":"247-57"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/jbio:2007036","citationCount":"0","resultStr":"{\"title\":\"[Chemoautotrophic endosymbioses: contemporary models for symbiogenesis?].\",\"authors\":\"Sophie Sanchez,&nbsp;Stéphane Hourdez,&nbsp;François H Lallier\",\"doi\":\"10.1051/jbio:2007036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxygen appears to be one of the key factors in understanding the evolution of life on Earth. Almost absent during more than 2 billion years, its subsequent increase is correlated with the emergence of oxygenic photosynthesis by Cyanobacteria, followed by aerobic Prokaryotes and eventually Eukaryotes, all primitively aerobic, and more recently, the development of complex multicellular organisms. However, in some reduced environments, still present at the surface of the Earth and even more so in ocean depths (hydrothermal vents, cold seeps, massive organic falls,...), anaerobic or micro-aerobic Prokaryotes continue to grow, including some chemoautotrophic bacteria deriving energy from sulfide oxidation for instance. A few Metazoa have managed to collaborate with such chemoautotroph Prokaryotes, the most abundant species forming endosymbiotic associations. The most studied of these endosymbioses (the mussels Bathymodiolus, the vestimentiferan tubeworm Riftia pachyptila, or the clams Calyptogena) have revealed important differences in the degree of interdependence between host and symbionts, and in the mode of symbiont transmission. The evolutive process of these symbioses is reminiscent of the primary endosymbioses which have given rise to the organelles of heterotrophic Eukaryotes (mitochondria) and phototrophic Eukaryotes (chloroplasts). The study of these modern days biological models could shed light on symbiogenesis itself and also potentially reveal thiotrophic Eukaryotes as a new lineage.</p>\",\"PeriodicalId\":80018,\"journal\":{\"name\":\"Journal de la Societe de biologie\",\"volume\":\"201 3\",\"pages\":\"247-57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/jbio:2007036\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de la Societe de biologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/jbio:2007036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de la Societe de biologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/jbio:2007036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氧气似乎是理解地球上生命进化的关键因素之一。在超过20亿年的时间里几乎没有,随后的增加与蓝藻的有氧光合作用的出现有关,然后是有氧原核生物,最后是真核生物,都是原始的有氧生物,最近,复杂的多细胞生物的发展。然而,在一些还原环境中,仍然存在于地球表面,甚至在海洋深处(热液喷口,冷渗漏,大量有机下降,……),厌氧或微需氧原核生物继续生长,包括一些化学自养细菌,例如,从硫化物氧化中获取能量。一些后生动物已经设法与这种化学自养原核生物合作,最丰富的物种形成内共生关系。研究最多的这些内共生生物(贻贝Bathymodiolus, veestimentiferan管虫Riftia pachyptila或蛤蜊Calyptogena)已经揭示了宿主和共生体之间相互依赖程度和共生体传播模式的重要差异。这些共生的进化过程与产生异养真核生物(线粒体)和光养真核生物(叶绿体)细胞器的初级内共生相似。这些现代生物学模型的研究可以揭示共生本身,也有可能揭示硫营养型真核生物作为一个新的谱系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Chemoautotrophic endosymbioses: contemporary models for symbiogenesis?].

Oxygen appears to be one of the key factors in understanding the evolution of life on Earth. Almost absent during more than 2 billion years, its subsequent increase is correlated with the emergence of oxygenic photosynthesis by Cyanobacteria, followed by aerobic Prokaryotes and eventually Eukaryotes, all primitively aerobic, and more recently, the development of complex multicellular organisms. However, in some reduced environments, still present at the surface of the Earth and even more so in ocean depths (hydrothermal vents, cold seeps, massive organic falls,...), anaerobic or micro-aerobic Prokaryotes continue to grow, including some chemoautotrophic bacteria deriving energy from sulfide oxidation for instance. A few Metazoa have managed to collaborate with such chemoautotroph Prokaryotes, the most abundant species forming endosymbiotic associations. The most studied of these endosymbioses (the mussels Bathymodiolus, the vestimentiferan tubeworm Riftia pachyptila, or the clams Calyptogena) have revealed important differences in the degree of interdependence between host and symbionts, and in the mode of symbiont transmission. The evolutive process of these symbioses is reminiscent of the primary endosymbioses which have given rise to the organelles of heterotrophic Eukaryotes (mitochondria) and phototrophic Eukaryotes (chloroplasts). The study of these modern days biological models could shed light on symbiogenesis itself and also potentially reveal thiotrophic Eukaryotes as a new lineage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信