Yi Shen, Einar Wilder-Smith, Esther Yu, Yee Kong Ng, Eng Ang Ling, Ian Spence, Meng Cheong Wong
{"title":"一种新的方法来探测内皮差异基因表达谱揭示新的基因。","authors":"Yi Shen, Einar Wilder-Smith, Esther Yu, Yee Kong Ng, Eng Ang Ling, Ian Spence, Meng Cheong Wong","doi":"10.1080/10623320701678425","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial dysfunction is a major feature of vascular diseases. A practical, minimally invasive method to effectively \"probe\" gene transcription for an individual patient's endothelium has potential to \"customize\" assessment for an individual at risk of vascular disease as well as pathophysiologic insight in an in vivo human, clinical context. Published literature lacks a methodology to identify endothelial differential gene expression in individuals with vascular disease. We describe a methodology to do so. The aim of this study was to specifically utilize (a) cutaneous microvascular biopsy, (b) laser capture microdissection, (c) cDNA amplification, (d) suppression subtractive hybridization, (e) high-throughput sequencing techniques, (f) real-time polymerase chain reaction (PCR), and (g) in combination of these methods, to profile differential gene expression in the context of cardiovascular and cerebrovascular disease. Endothelial cells were obtained by laser capture microdissection from a patient and a healthy sibling's microvascular biopsy tissues. Endothelial RNA was extracted, reverse transcribed, and amplified to ds cDNA. Suppression subtractive hybridization was used to establish an endothelial differential gene expression library. Real-time PCR confirmed SERP1, caspase 8, IGFBP7, S100A4, F85, and F147 up-regulation between 1.4- and 3.47-fold. The authors have successfully established a methodology to profile endothelial differential gene expression and identified six differentially expressed genes. This minimally invasive novel method has potential wide application in the customized assessment of many patients suffering vascular diseases.</p>","PeriodicalId":11587,"journal":{"name":"Endothelium : journal of endothelial cell research","volume":"14 6","pages":"303-14"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10623320701678425","citationCount":"1","resultStr":"{\"title\":\"A novel methodology to probe endothelial differential gene expression profile reveals novel genes.\",\"authors\":\"Yi Shen, Einar Wilder-Smith, Esther Yu, Yee Kong Ng, Eng Ang Ling, Ian Spence, Meng Cheong Wong\",\"doi\":\"10.1080/10623320701678425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endothelial dysfunction is a major feature of vascular diseases. A practical, minimally invasive method to effectively \\\"probe\\\" gene transcription for an individual patient's endothelium has potential to \\\"customize\\\" assessment for an individual at risk of vascular disease as well as pathophysiologic insight in an in vivo human, clinical context. Published literature lacks a methodology to identify endothelial differential gene expression in individuals with vascular disease. We describe a methodology to do so. The aim of this study was to specifically utilize (a) cutaneous microvascular biopsy, (b) laser capture microdissection, (c) cDNA amplification, (d) suppression subtractive hybridization, (e) high-throughput sequencing techniques, (f) real-time polymerase chain reaction (PCR), and (g) in combination of these methods, to profile differential gene expression in the context of cardiovascular and cerebrovascular disease. Endothelial cells were obtained by laser capture microdissection from a patient and a healthy sibling's microvascular biopsy tissues. Endothelial RNA was extracted, reverse transcribed, and amplified to ds cDNA. Suppression subtractive hybridization was used to establish an endothelial differential gene expression library. Real-time PCR confirmed SERP1, caspase 8, IGFBP7, S100A4, F85, and F147 up-regulation between 1.4- and 3.47-fold. The authors have successfully established a methodology to profile endothelial differential gene expression and identified six differentially expressed genes. This minimally invasive novel method has potential wide application in the customized assessment of many patients suffering vascular diseases.</p>\",\"PeriodicalId\":11587,\"journal\":{\"name\":\"Endothelium : journal of endothelial cell research\",\"volume\":\"14 6\",\"pages\":\"303-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10623320701678425\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endothelium : journal of endothelial cell research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10623320701678425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endothelium : journal of endothelial cell research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10623320701678425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel methodology to probe endothelial differential gene expression profile reveals novel genes.
Endothelial dysfunction is a major feature of vascular diseases. A practical, minimally invasive method to effectively "probe" gene transcription for an individual patient's endothelium has potential to "customize" assessment for an individual at risk of vascular disease as well as pathophysiologic insight in an in vivo human, clinical context. Published literature lacks a methodology to identify endothelial differential gene expression in individuals with vascular disease. We describe a methodology to do so. The aim of this study was to specifically utilize (a) cutaneous microvascular biopsy, (b) laser capture microdissection, (c) cDNA amplification, (d) suppression subtractive hybridization, (e) high-throughput sequencing techniques, (f) real-time polymerase chain reaction (PCR), and (g) in combination of these methods, to profile differential gene expression in the context of cardiovascular and cerebrovascular disease. Endothelial cells were obtained by laser capture microdissection from a patient and a healthy sibling's microvascular biopsy tissues. Endothelial RNA was extracted, reverse transcribed, and amplified to ds cDNA. Suppression subtractive hybridization was used to establish an endothelial differential gene expression library. Real-time PCR confirmed SERP1, caspase 8, IGFBP7, S100A4, F85, and F147 up-regulation between 1.4- and 3.47-fold. The authors have successfully established a methodology to profile endothelial differential gene expression and identified six differentially expressed genes. This minimally invasive novel method has potential wide application in the customized assessment of many patients suffering vascular diseases.