{"title":"苏云金芽孢杆菌Cry4Ba毒素克隆结构域II-III片段与蚊幼虫中肠蛋白的结合特性","authors":"Seangdeun Moonsom, Urai Chaisri, Watchara Kasinrerk, Chanan Angsuthanasombat","doi":"10.5483/bmbrep.2007.40.5.783","DOIUrl":null,"url":null,"abstract":"<p><p>Receptor binding plays an important role in determining host specificity of the Bacillus thuringiensis Cry delta-endotoxins. Mutations in domains II and III have suggested the participation of certain residues in receptor recognition and insect specificity. In the present study, we expressed the cloned domain II-III fragment of Cry4Ba and examined its binding characteristics to mosquito-larval midgut proteins. The 43-kDa Cry4Ba-domain II-III protein over-expressed in Escherichia coli as inclusion bodies was only soluble when carbonate buffer, pH 10.0 was supplemented with 4 M urea. After renaturation via stepwise dialysis and subsequent purification, the refolded domain II-III protein, which specifically reacts with anti Cry4Ba-domain III monoclonal antibody, predominantly exists as a beta-sheet structure determined by circular dichroism spectroscopy. In vitro binding analysis to both histological midgut tissue sections and brush border membrane proteins prepared from susceptible Aedes aegypti mosquito-larvae revealed that the isolated Cry4Ba-domain II-III protein showed binding functionality comparable to the 65-kDa full-length active toxin. Altogether, the data present the 43-kDa Cry4Ba fragment comprising domains II and III that was produced in isolation was able to retain its receptor-binding characteristics to the target larval midgut proteins.</p>","PeriodicalId":15113,"journal":{"name":"Journal of biochemistry and molecular biology","volume":"40 5","pages":"783-90"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Binding characteristics to mosquito-larval midgut proteins of the cloned domain II-III fragment from the Bacillus thuringiensis Cry4Ba toxin.\",\"authors\":\"Seangdeun Moonsom, Urai Chaisri, Watchara Kasinrerk, Chanan Angsuthanasombat\",\"doi\":\"10.5483/bmbrep.2007.40.5.783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Receptor binding plays an important role in determining host specificity of the Bacillus thuringiensis Cry delta-endotoxins. Mutations in domains II and III have suggested the participation of certain residues in receptor recognition and insect specificity. In the present study, we expressed the cloned domain II-III fragment of Cry4Ba and examined its binding characteristics to mosquito-larval midgut proteins. The 43-kDa Cry4Ba-domain II-III protein over-expressed in Escherichia coli as inclusion bodies was only soluble when carbonate buffer, pH 10.0 was supplemented with 4 M urea. After renaturation via stepwise dialysis and subsequent purification, the refolded domain II-III protein, which specifically reacts with anti Cry4Ba-domain III monoclonal antibody, predominantly exists as a beta-sheet structure determined by circular dichroism spectroscopy. In vitro binding analysis to both histological midgut tissue sections and brush border membrane proteins prepared from susceptible Aedes aegypti mosquito-larvae revealed that the isolated Cry4Ba-domain II-III protein showed binding functionality comparable to the 65-kDa full-length active toxin. Altogether, the data present the 43-kDa Cry4Ba fragment comprising domains II and III that was produced in isolation was able to retain its receptor-binding characteristics to the target larval midgut proteins.</p>\",\"PeriodicalId\":15113,\"journal\":{\"name\":\"Journal of biochemistry and molecular biology\",\"volume\":\"40 5\",\"pages\":\"783-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry and molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5483/bmbrep.2007.40.5.783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry and molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5483/bmbrep.2007.40.5.783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Binding characteristics to mosquito-larval midgut proteins of the cloned domain II-III fragment from the Bacillus thuringiensis Cry4Ba toxin.
Receptor binding plays an important role in determining host specificity of the Bacillus thuringiensis Cry delta-endotoxins. Mutations in domains II and III have suggested the participation of certain residues in receptor recognition and insect specificity. In the present study, we expressed the cloned domain II-III fragment of Cry4Ba and examined its binding characteristics to mosquito-larval midgut proteins. The 43-kDa Cry4Ba-domain II-III protein over-expressed in Escherichia coli as inclusion bodies was only soluble when carbonate buffer, pH 10.0 was supplemented with 4 M urea. After renaturation via stepwise dialysis and subsequent purification, the refolded domain II-III protein, which specifically reacts with anti Cry4Ba-domain III monoclonal antibody, predominantly exists as a beta-sheet structure determined by circular dichroism spectroscopy. In vitro binding analysis to both histological midgut tissue sections and brush border membrane proteins prepared from susceptible Aedes aegypti mosquito-larvae revealed that the isolated Cry4Ba-domain II-III protein showed binding functionality comparable to the 65-kDa full-length active toxin. Altogether, the data present the 43-kDa Cry4Ba fragment comprising domains II and III that was produced in isolation was able to retain its receptor-binding characteristics to the target larval midgut proteins.