随机非线性动力学模式形成和增长模型。

Leonid P Yaroslavsky
{"title":"随机非线性动力学模式形成和增长模型。","authors":"Leonid P Yaroslavsky","doi":"10.1186/1753-4631-1-4","DOIUrl":null,"url":null,"abstract":"<p><p> Stochastic evolutionary growth and pattern formation models are treated in a unified way in terms of algorithmic models of nonlinear dynamic systems with feedback built of a standard set of signal processing units. A number of concrete models is described and illustrated by numerous examples of artificially generated patterns that closely imitate wide variety of patterns found in the nature.</p>","PeriodicalId":87480,"journal":{"name":"Nonlinear biomedical physics","volume":"1 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1753-4631-1-4","citationCount":"6","resultStr":"{\"title\":\"Stochastic nonlinear dynamics pattern formation and growth models.\",\"authors\":\"Leonid P Yaroslavsky\",\"doi\":\"10.1186/1753-4631-1-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> Stochastic evolutionary growth and pattern formation models are treated in a unified way in terms of algorithmic models of nonlinear dynamic systems with feedback built of a standard set of signal processing units. A number of concrete models is described and illustrated by numerous examples of artificially generated patterns that closely imitate wide variety of patterns found in the nature.</p>\",\"PeriodicalId\":87480,\"journal\":{\"name\":\"Nonlinear biomedical physics\",\"volume\":\"1 1\",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1753-4631-1-4\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear biomedical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1753-4631-1-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear biomedical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1753-4631-1-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随机进化增长模型和模式形成模型统一地用一组标准信号处理单元建立的具有反馈的非线性动态系统的算法模型来处理。许多具体的模型被描述并通过许多人工生成的模式的例子来说明,这些模式密切模仿自然界中发现的各种模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stochastic nonlinear dynamics pattern formation and growth models.

Stochastic nonlinear dynamics pattern formation and growth models.

Stochastic nonlinear dynamics pattern formation and growth models.

Stochastic nonlinear dynamics pattern formation and growth models.

Stochastic evolutionary growth and pattern formation models are treated in a unified way in terms of algorithmic models of nonlinear dynamic systems with feedback built of a standard set of signal processing units. A number of concrete models is described and illustrated by numerous examples of artificially generated patterns that closely imitate wide variety of patterns found in the nature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信