J F Arnal, H Laurell, F Lenfant, V Douin-Echinard, L Brouchet, P Gourdy
{"title":"雌二醇在动脉粥样硬化和再内皮化中的作用。","authors":"J F Arnal, H Laurell, F Lenfant, V Douin-Echinard, L Brouchet, P Gourdy","doi":"10.1007/2789_2006_017","DOIUrl":null,"url":null,"abstract":"<p><p>Whereas hormonal replacement/menopause therapy (HRT) in postmenopausal women increases coronary artery disease risk, epidemiological studies (protection in premenopaused women) suggest and experimental studies (prevention of the development of fatty streaks in animals) demonstrate a major atheroprotective action of estradiol (E2). The understanding of the deleterious and beneficial effects of estrogens is thus required. The atheroprotective effect of E2 is absent in mice deficient in mature T and B lymphocytes, demonstrating the crucial role of the endothelium/immune system pair. The immunoinflammatory system appears to play a key role in the development of fatty streak deposit as well as in the rupture of the atherosclerotic plaque. Whereas E2 favors an anti-inflammatory effect in vitro (cultured cells), it elicits in vivo a proinflammation at the level of several subpopulations of the immunoinflammatory system, which could contribute to plaque destabilization. Endothelium appears to be an important target for E2, since it potentiates endothelial NO and prostacyclin production, thus promoting beneficial effects such as vasorelaxation and inhibition of platelet aggregation. Prostacyclin, but not NO, appear to be involved in the atheroprotective effect of E2, which also accelerates endothelial regrowth, thus favoring vascular healing. Finally, most of these E2 effects are mediated by estrogen receptor alpha and are independent of estrogen receptor beta. In summary, a better understanding of the mechanisms of estrogens on the normal and atheromatous arteries is required and should help to optimize the prevention of cardiovascular disease after menopause. These mouse models should help to screen existing and future selective estrogen receptor modulators (SERMs).</p>","PeriodicalId":87471,"journal":{"name":"Ernst Schering Foundation symposium proceedings","volume":" 1","pages":"69-86"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/2789_2006_017","citationCount":"5","resultStr":"{\"title\":\"Estradiol action in atherosclerosis and reendothelialization.\",\"authors\":\"J F Arnal, H Laurell, F Lenfant, V Douin-Echinard, L Brouchet, P Gourdy\",\"doi\":\"10.1007/2789_2006_017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whereas hormonal replacement/menopause therapy (HRT) in postmenopausal women increases coronary artery disease risk, epidemiological studies (protection in premenopaused women) suggest and experimental studies (prevention of the development of fatty streaks in animals) demonstrate a major atheroprotective action of estradiol (E2). The understanding of the deleterious and beneficial effects of estrogens is thus required. The atheroprotective effect of E2 is absent in mice deficient in mature T and B lymphocytes, demonstrating the crucial role of the endothelium/immune system pair. The immunoinflammatory system appears to play a key role in the development of fatty streak deposit as well as in the rupture of the atherosclerotic plaque. Whereas E2 favors an anti-inflammatory effect in vitro (cultured cells), it elicits in vivo a proinflammation at the level of several subpopulations of the immunoinflammatory system, which could contribute to plaque destabilization. Endothelium appears to be an important target for E2, since it potentiates endothelial NO and prostacyclin production, thus promoting beneficial effects such as vasorelaxation and inhibition of platelet aggregation. Prostacyclin, but not NO, appear to be involved in the atheroprotective effect of E2, which also accelerates endothelial regrowth, thus favoring vascular healing. Finally, most of these E2 effects are mediated by estrogen receptor alpha and are independent of estrogen receptor beta. In summary, a better understanding of the mechanisms of estrogens on the normal and atheromatous arteries is required and should help to optimize the prevention of cardiovascular disease after menopause. These mouse models should help to screen existing and future selective estrogen receptor modulators (SERMs).</p>\",\"PeriodicalId\":87471,\"journal\":{\"name\":\"Ernst Schering Foundation symposium proceedings\",\"volume\":\" 1\",\"pages\":\"69-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/2789_2006_017\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ernst Schering Foundation symposium proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/2789_2006_017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ernst Schering Foundation symposium proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/2789_2006_017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estradiol action in atherosclerosis and reendothelialization.
Whereas hormonal replacement/menopause therapy (HRT) in postmenopausal women increases coronary artery disease risk, epidemiological studies (protection in premenopaused women) suggest and experimental studies (prevention of the development of fatty streaks in animals) demonstrate a major atheroprotective action of estradiol (E2). The understanding of the deleterious and beneficial effects of estrogens is thus required. The atheroprotective effect of E2 is absent in mice deficient in mature T and B lymphocytes, demonstrating the crucial role of the endothelium/immune system pair. The immunoinflammatory system appears to play a key role in the development of fatty streak deposit as well as in the rupture of the atherosclerotic plaque. Whereas E2 favors an anti-inflammatory effect in vitro (cultured cells), it elicits in vivo a proinflammation at the level of several subpopulations of the immunoinflammatory system, which could contribute to plaque destabilization. Endothelium appears to be an important target for E2, since it potentiates endothelial NO and prostacyclin production, thus promoting beneficial effects such as vasorelaxation and inhibition of platelet aggregation. Prostacyclin, but not NO, appear to be involved in the atheroprotective effect of E2, which also accelerates endothelial regrowth, thus favoring vascular healing. Finally, most of these E2 effects are mediated by estrogen receptor alpha and are independent of estrogen receptor beta. In summary, a better understanding of the mechanisms of estrogens on the normal and atheromatous arteries is required and should help to optimize the prevention of cardiovascular disease after menopause. These mouse models should help to screen existing and future selective estrogen receptor modulators (SERMs).