{"title":"通过完整的科学和国际合作,发展营养基因组学的前景。","authors":"Jim Kaput","doi":"10.1159/000107197","DOIUrl":null,"url":null,"abstract":"<p><p>Food is economically available to 4 billion of the world's 6 billion people, a situation that resulted from dramatically improved methods for producing, storing, and distributing food on a mass scale during the last 100 years. Nevertheless, almost 2 billion people are malnourished through either over-consumption of fats and calories or lack of adequate calories and micronutrients. Malnourishment results in chronic diseases, immune dysfunction, and early death. Analyzing and understanding gene - nutrient interactions is therefore a necessary step for designing and producing foods for maintaining the health of populations and individuals. Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and conversely, how genes and their products metabolize these constituents into nutrients, antinutrients, and bioactive compounds. However, defining causal gene X nutrient interactions involved in maintaining optimum health are more challenging because of the (i) chemical complexity of food, (ii) genetic heterogeneity of humans, and (iii) the complexity of physiological responses to nutrient intakes in health and disease. Three significant developments will allow progress in nutrition and nutrigenomics: the development of high throughput omic (genomic, transcriptomic, proteomic, and metabolomic) technologies, improved experimental designs, and the development of research collaborations to study complex biological processes. The practical applications of nutrigenomics are the possibility of delivering the right micronutrients in the optimum amount to the food insecure and developing novel foods which are more nutritious, flavourful, storable, and health promoting than many of the products manufactured today.</p>","PeriodicalId":55148,"journal":{"name":"Forum of Nutrition","volume":"60 ","pages":"209-223"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000107197","citationCount":"16","resultStr":"{\"title\":\"Developing the promise of nutrigenomics through complete science and international collaborations.\",\"authors\":\"Jim Kaput\",\"doi\":\"10.1159/000107197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Food is economically available to 4 billion of the world's 6 billion people, a situation that resulted from dramatically improved methods for producing, storing, and distributing food on a mass scale during the last 100 years. Nevertheless, almost 2 billion people are malnourished through either over-consumption of fats and calories or lack of adequate calories and micronutrients. Malnourishment results in chronic diseases, immune dysfunction, and early death. Analyzing and understanding gene - nutrient interactions is therefore a necessary step for designing and producing foods for maintaining the health of populations and individuals. Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and conversely, how genes and their products metabolize these constituents into nutrients, antinutrients, and bioactive compounds. However, defining causal gene X nutrient interactions involved in maintaining optimum health are more challenging because of the (i) chemical complexity of food, (ii) genetic heterogeneity of humans, and (iii) the complexity of physiological responses to nutrient intakes in health and disease. Three significant developments will allow progress in nutrition and nutrigenomics: the development of high throughput omic (genomic, transcriptomic, proteomic, and metabolomic) technologies, improved experimental designs, and the development of research collaborations to study complex biological processes. The practical applications of nutrigenomics are the possibility of delivering the right micronutrients in the optimum amount to the food insecure and developing novel foods which are more nutritious, flavourful, storable, and health promoting than many of the products manufactured today.</p>\",\"PeriodicalId\":55148,\"journal\":{\"name\":\"Forum of Nutrition\",\"volume\":\"60 \",\"pages\":\"209-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000107197\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Nutrition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000107197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000107197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing the promise of nutrigenomics through complete science and international collaborations.
Food is economically available to 4 billion of the world's 6 billion people, a situation that resulted from dramatically improved methods for producing, storing, and distributing food on a mass scale during the last 100 years. Nevertheless, almost 2 billion people are malnourished through either over-consumption of fats and calories or lack of adequate calories and micronutrients. Malnourishment results in chronic diseases, immune dysfunction, and early death. Analyzing and understanding gene - nutrient interactions is therefore a necessary step for designing and producing foods for maintaining the health of populations and individuals. Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and conversely, how genes and their products metabolize these constituents into nutrients, antinutrients, and bioactive compounds. However, defining causal gene X nutrient interactions involved in maintaining optimum health are more challenging because of the (i) chemical complexity of food, (ii) genetic heterogeneity of humans, and (iii) the complexity of physiological responses to nutrient intakes in health and disease. Three significant developments will allow progress in nutrition and nutrigenomics: the development of high throughput omic (genomic, transcriptomic, proteomic, and metabolomic) technologies, improved experimental designs, and the development of research collaborations to study complex biological processes. The practical applications of nutrigenomics are the possibility of delivering the right micronutrients in the optimum amount to the food insecure and developing novel foods which are more nutritious, flavourful, storable, and health promoting than many of the products manufactured today.