Ahmed El-Sohemy, Lindsay Stewart, LNora Khataan, Bénédicte Fontaine-Bisson, Pauline Kwong, Stephen Ozsungur, Marilyn C Cornelis
{"title":"味觉的营养基因组学——对食物偏好和食物生产的影响。","authors":"Ahmed El-Sohemy, Lindsay Stewart, LNora Khataan, Bénédicte Fontaine-Bisson, Pauline Kwong, Stephen Ozsungur, Marilyn C Cornelis","doi":"10.1159/000107194","DOIUrl":null,"url":null,"abstract":"<p><p>Food preferences are influenced by a number of factors such as personal experiences, cultural adaptations and perceived health benefits. Taste, however, is the most important determinant of how much a food is liked or disliked. Based on the response to bitter-tasting compounds such as phenylthiocarbamide (PTC) or 6-n-propylthiouracil (PROP), individuals can be classified as supertasters, tasters or nontasters. Sensitivity to bitter-tasting compounds is a genetic trait that has been recognized for more than 70 years. Genetic differences in bitter taste perception may account for individual differences in food preferences. Other factors such as age, sex and ethnicity may also modify the response to bitter-tasting compounds. There are several members of the TAS2R receptor gene family that encode taste receptors on the tongue, and genetic polymorphisms of TAS2R38 have been associated with marked differences in the perception of PTC and PROP. However, the association between TAS2R38 genotypes and aversion to bitter-tasting foods is not clear. Single nucleotide polymorphisms in other taste receptor genes have recently been identified, but their role in bitter taste perception is not known. Establishing a genetic basis for food likes/dislikes may explain, in part, some of the inconsistencies among epidemiologic studies relating diet to risk of chronic diseases. Identifying populations with preferences for particular flavors or foods may lead to the development of novel food products targeted to specific genotypes or ethnic populations.</p>","PeriodicalId":55148,"journal":{"name":"Forum of Nutrition","volume":"60 ","pages":"176-182"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000107194","citationCount":"55","resultStr":"{\"title\":\"Nutrigenomics of taste - impact on food preferences and food production.\",\"authors\":\"Ahmed El-Sohemy, Lindsay Stewart, LNora Khataan, Bénédicte Fontaine-Bisson, Pauline Kwong, Stephen Ozsungur, Marilyn C Cornelis\",\"doi\":\"10.1159/000107194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Food preferences are influenced by a number of factors such as personal experiences, cultural adaptations and perceived health benefits. Taste, however, is the most important determinant of how much a food is liked or disliked. Based on the response to bitter-tasting compounds such as phenylthiocarbamide (PTC) or 6-n-propylthiouracil (PROP), individuals can be classified as supertasters, tasters or nontasters. Sensitivity to bitter-tasting compounds is a genetic trait that has been recognized for more than 70 years. Genetic differences in bitter taste perception may account for individual differences in food preferences. Other factors such as age, sex and ethnicity may also modify the response to bitter-tasting compounds. There are several members of the TAS2R receptor gene family that encode taste receptors on the tongue, and genetic polymorphisms of TAS2R38 have been associated with marked differences in the perception of PTC and PROP. However, the association between TAS2R38 genotypes and aversion to bitter-tasting foods is not clear. Single nucleotide polymorphisms in other taste receptor genes have recently been identified, but their role in bitter taste perception is not known. Establishing a genetic basis for food likes/dislikes may explain, in part, some of the inconsistencies among epidemiologic studies relating diet to risk of chronic diseases. Identifying populations with preferences for particular flavors or foods may lead to the development of novel food products targeted to specific genotypes or ethnic populations.</p>\",\"PeriodicalId\":55148,\"journal\":{\"name\":\"Forum of Nutrition\",\"volume\":\"60 \",\"pages\":\"176-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000107194\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Nutrition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000107194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000107194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nutrigenomics of taste - impact on food preferences and food production.
Food preferences are influenced by a number of factors such as personal experiences, cultural adaptations and perceived health benefits. Taste, however, is the most important determinant of how much a food is liked or disliked. Based on the response to bitter-tasting compounds such as phenylthiocarbamide (PTC) or 6-n-propylthiouracil (PROP), individuals can be classified as supertasters, tasters or nontasters. Sensitivity to bitter-tasting compounds is a genetic trait that has been recognized for more than 70 years. Genetic differences in bitter taste perception may account for individual differences in food preferences. Other factors such as age, sex and ethnicity may also modify the response to bitter-tasting compounds. There are several members of the TAS2R receptor gene family that encode taste receptors on the tongue, and genetic polymorphisms of TAS2R38 have been associated with marked differences in the perception of PTC and PROP. However, the association between TAS2R38 genotypes and aversion to bitter-tasting foods is not clear. Single nucleotide polymorphisms in other taste receptor genes have recently been identified, but their role in bitter taste perception is not known. Establishing a genetic basis for food likes/dislikes may explain, in part, some of the inconsistencies among epidemiologic studies relating diet to risk of chronic diseases. Identifying populations with preferences for particular flavors or foods may lead to the development of novel food products targeted to specific genotypes or ethnic populations.