全基因组研究的综合数据分析。

EXS Pub Date : 2007-01-01 DOI:10.1007/978-3-7643-7439-6_13
Matthias Steinfath, Dirk Repsilber, Matthias Scholz, Dirk Walther, Joachim Selbig
{"title":"全基因组研究的综合数据分析。","authors":"Matthias Steinfath,&nbsp;Dirk Repsilber,&nbsp;Matthias Scholz,&nbsp;Dirk Walther,&nbsp;Joachim Selbig","doi":"10.1007/978-3-7643-7439-6_13","DOIUrl":null,"url":null,"abstract":"<p><p>Integrated data analysis is introduced as the intermediate level of a systems biology approach to analyse different 'omics' datasets, i.e., genome-wide measurements of transcripts, protein levels or protein-protein interactions, and metabolite levels aiming at generating a coherent understanding of biological function. In this chapter we focus on different methods of correlation analyses ranging from simple pairwise correlation to kernel canonical correlation which were recently applied in molecular biology. Several examples are presented to illustrate their application. The input data for this analysis frequently originate from different experimental platforms. Therefore, preprocessing steps such as data normalisation and missing value estimation are inherent to this approach. The corresponding procedures, potential pitfalls and biases, and available software solutions are reviewed. The multiplicity of observations obtained in omics-profiling experiments necessitates the application of multiple testing correction techniques.</p>","PeriodicalId":77125,"journal":{"name":"EXS","volume":"97 ","pages":"309-29"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Integrated data analysis for genome-wide research.\",\"authors\":\"Matthias Steinfath,&nbsp;Dirk Repsilber,&nbsp;Matthias Scholz,&nbsp;Dirk Walther,&nbsp;Joachim Selbig\",\"doi\":\"10.1007/978-3-7643-7439-6_13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrated data analysis is introduced as the intermediate level of a systems biology approach to analyse different 'omics' datasets, i.e., genome-wide measurements of transcripts, protein levels or protein-protein interactions, and metabolite levels aiming at generating a coherent understanding of biological function. In this chapter we focus on different methods of correlation analyses ranging from simple pairwise correlation to kernel canonical correlation which were recently applied in molecular biology. Several examples are presented to illustrate their application. The input data for this analysis frequently originate from different experimental platforms. Therefore, preprocessing steps such as data normalisation and missing value estimation are inherent to this approach. The corresponding procedures, potential pitfalls and biases, and available software solutions are reviewed. The multiplicity of observations obtained in omics-profiling experiments necessitates the application of multiple testing correction techniques.</p>\",\"PeriodicalId\":77125,\"journal\":{\"name\":\"EXS\",\"volume\":\"97 \",\"pages\":\"309-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EXS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-7643-7439-6_13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EXS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-7643-7439-6_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

综合数据分析作为系统生物学方法的中间水平,用于分析不同的“组学”数据集,即转录本的全基因组测量,蛋白质水平或蛋白质-蛋白质相互作用,以及旨在产生对生物功能的连贯理解的代谢物水平。本章重点介绍了近年来在分子生物学中应用的相关分析方法,从简单的两两相关到核典型相关。给出了几个例子来说明它们的应用。该分析的输入数据通常来自不同的实验平台。因此,数据归一化和缺失值估计等预处理步骤是这种方法所固有的。相应的程序,潜在的陷阱和偏见,以及可用的软件解决方案进行了审查。在组学分析实验中获得的多重观察结果需要应用多种测试校正技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated data analysis for genome-wide research.

Integrated data analysis is introduced as the intermediate level of a systems biology approach to analyse different 'omics' datasets, i.e., genome-wide measurements of transcripts, protein levels or protein-protein interactions, and metabolite levels aiming at generating a coherent understanding of biological function. In this chapter we focus on different methods of correlation analyses ranging from simple pairwise correlation to kernel canonical correlation which were recently applied in molecular biology. Several examples are presented to illustrate their application. The input data for this analysis frequently originate from different experimental platforms. Therefore, preprocessing steps such as data normalisation and missing value estimation are inherent to this approach. The corresponding procedures, potential pitfalls and biases, and available software solutions are reviewed. The multiplicity of observations obtained in omics-profiling experiments necessitates the application of multiple testing correction techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EXS
EXS
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信