{"title":"内皮祖细胞。","authors":"Brendan Doyle, Pat Metharom, Noel M Caplice","doi":"10.1080/10623320601061656","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of circulating endothelial progenitor cells (EPCs) has prompted an explosion of interest in postnatal vasculogenesis and the role of this mechanism in human health and disease. Previously considered restricted to the embryonic phase, the differentiation in situ of progenitor cells to vascular endothelium is now known to occur in the adult. A role for EPCs in the modulation of angiogenesis has also been recognized. These cells are enriched in the mononuclear cell fraction of peripheral blood but have also been isolated from bone marrow, the vessel wall, and a number of other organs and tissues. Accumulating data suggest an important vasculoprotective function for EPCs, although a maladaptive role underpinning a variety of angiogenesis-dependent diseases is also being investigated. Encouraging results observed with experimental and early human trials of EPC-based regenerative therapies have further underscored the significance of this recently discovered cell type. Notwithstanding the scope and pace of these developments, a number of challenges remain: the precise ontogeny and lineage of these cells is unknown, the true extent to which EPCs participate in neovascularization and vascular repair is still uncertain, and the efficacy of EPC-based regenerative therapies has yet to be proven in randomized controlled trials.</p>","PeriodicalId":11587,"journal":{"name":"Endothelium : journal of endothelial cell research","volume":"13 6","pages":"403-10"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10623320601061656","citationCount":"1","resultStr":"{\"title\":\"Endothelial progenitor cells.\",\"authors\":\"Brendan Doyle, Pat Metharom, Noel M Caplice\",\"doi\":\"10.1080/10623320601061656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The identification of circulating endothelial progenitor cells (EPCs) has prompted an explosion of interest in postnatal vasculogenesis and the role of this mechanism in human health and disease. Previously considered restricted to the embryonic phase, the differentiation in situ of progenitor cells to vascular endothelium is now known to occur in the adult. A role for EPCs in the modulation of angiogenesis has also been recognized. These cells are enriched in the mononuclear cell fraction of peripheral blood but have also been isolated from bone marrow, the vessel wall, and a number of other organs and tissues. Accumulating data suggest an important vasculoprotective function for EPCs, although a maladaptive role underpinning a variety of angiogenesis-dependent diseases is also being investigated. Encouraging results observed with experimental and early human trials of EPC-based regenerative therapies have further underscored the significance of this recently discovered cell type. Notwithstanding the scope and pace of these developments, a number of challenges remain: the precise ontogeny and lineage of these cells is unknown, the true extent to which EPCs participate in neovascularization and vascular repair is still uncertain, and the efficacy of EPC-based regenerative therapies has yet to be proven in randomized controlled trials.</p>\",\"PeriodicalId\":11587,\"journal\":{\"name\":\"Endothelium : journal of endothelial cell research\",\"volume\":\"13 6\",\"pages\":\"403-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10623320601061656\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endothelium : journal of endothelial cell research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10623320601061656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endothelium : journal of endothelial cell research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10623320601061656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The identification of circulating endothelial progenitor cells (EPCs) has prompted an explosion of interest in postnatal vasculogenesis and the role of this mechanism in human health and disease. Previously considered restricted to the embryonic phase, the differentiation in situ of progenitor cells to vascular endothelium is now known to occur in the adult. A role for EPCs in the modulation of angiogenesis has also been recognized. These cells are enriched in the mononuclear cell fraction of peripheral blood but have also been isolated from bone marrow, the vessel wall, and a number of other organs and tissues. Accumulating data suggest an important vasculoprotective function for EPCs, although a maladaptive role underpinning a variety of angiogenesis-dependent diseases is also being investigated. Encouraging results observed with experimental and early human trials of EPC-based regenerative therapies have further underscored the significance of this recently discovered cell type. Notwithstanding the scope and pace of these developments, a number of challenges remain: the precise ontogeny and lineage of these cells is unknown, the true extent to which EPCs participate in neovascularization and vascular repair is still uncertain, and the efficacy of EPC-based regenerative therapies has yet to be proven in randomized controlled trials.